A为实对称矩阵,且满足A^2-3A+2E=0,证明:A为正定矩阵
展开全部
我觉得可以逆用凯莱-汉密尔顿定理,令q为特征值,p为特征向量,则A*p=q*p.将A^2-3A+2E=0两边同乘p,则(q^2-3q+2)*p=0,且p非0.则可以解出q=1,2.特征值均大于0,则A正定.
这种类型题目很多,当然还有其他解法,一时回忆不起来了.
这种类型题目很多,当然还有其他解法,一时回忆不起来了.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询