当x趋近0时,求(cosx)^(1/x^2)的极限.

 我来答
黑科技1718
2022-08-19 · TA获得超过5846个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:80.6万
展开全部
原极限=e^limx→0 ln (cosx)^(1/x^2)
考虑lim ln(cosx)^(1/x^2)
=lim ln(1+cosx-1) / x^2
利用等价无穷小:ln(1+x)~x,1-cos~x^2/2
=lim (-x^2/2)/x^2
=-1/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式