已知x,y属於R,且3x^2+2y^2=6x,求x+y的最大值与最小值(要求详细解答)?
1个回答
展开全部
3(x^2-2x+1)+2y^2=3
3(x-1)^2+2y^2=3
(x-1)^2+2y^2/3=1
令x-1=cosa,x=1+cosa
则2y^2/3=1-cos²a=sin²a
所以y=√(3/2)*sina
所以x+y=1+cosa+√(3/2)*sina
=√[(√3/2)^2+1^2]sin(a+z)+1
=√(5/2)sin(a+z)+1
所以最大值=(√10)/2+1,最小值=-(根号10)/2+1.,6,
3(x-1)^2+2y^2=3
(x-1)^2+2y^2/3=1
令x-1=cosa,x=1+cosa
则2y^2/3=1-cos²a=sin²a
所以y=√(3/2)*sina
所以x+y=1+cosa+√(3/2)*sina
=√[(√3/2)^2+1^2]sin(a+z)+1
=√(5/2)sin(a+z)+1
所以最大值=(√10)/2+1,最小值=-(根号10)/2+1.,6,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询