43.设 xf(x)dx=arctanx+c ,求 f(x)dx
展开全部
∫xf(x)dx = arctanx + C
xf(x) = (arctanx)’= 1/(1+x^2)
f(x) = 1/[x(1+x^2)] = (1/2)[1/(1+x)+(1-x)/(1+x^2)]
= (1/2)[1/(1+x) + 1/(1+x^2) - x/(1+x^2)]
∫f(x)dx = (1/2)[ln|1+x| + arctanx - (1/2)ln(1+x^2)] + C1
xf(x) = (arctanx)’= 1/(1+x^2)
f(x) = 1/[x(1+x^2)] = (1/2)[1/(1+x)+(1-x)/(1+x^2)]
= (1/2)[1/(1+x) + 1/(1+x^2) - x/(1+x^2)]
∫f(x)dx = (1/2)[ln|1+x| + arctanx - (1/2)ln(1+x^2)] + C1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询