设随机变量x在区间a b上服从均匀分布,求x得数学期望ex和方差dx!
1个回答
展开全部
X服从均匀分布,
即X~U(a,b),则E(X)=(a+b)/2,D(X)=(b-a)²/12
证明如下:
设连续型随机变量X~U(a,b)
那么其分布函数F(x)=(x-a)/(b-a),a≤x≤b
E(x)=∫F(x)dx=∫(a到b)(x-a)/(b-a)dx
=(x²/2-a)/(b-a) |(a到b)
=(b²/2-a)/(b-a)-(a²/2-a)/(b-a)=(a+b)/2
E(x²)=∫F(x²)dx=∫(a到b)(x²-a)/(b-a)dx
=(x³/3-a)/(b-a) |(a到b)
=(b³/3-a)/(b-a)-(a³/3-a)/(b-a)=(a²+b²+ab)/3
所以D(x)=E(x²)-E(x)²
=(a²+b²+ab)/3-(a+b)²/4
=(a²+b²-2ab)/12=(b-a)²/12
即X~U(a,b),则E(X)=(a+b)/2,D(X)=(b-a)²/12
证明如下:
设连续型随机变量X~U(a,b)
那么其分布函数F(x)=(x-a)/(b-a),a≤x≤b
E(x)=∫F(x)dx=∫(a到b)(x-a)/(b-a)dx
=(x²/2-a)/(b-a) |(a到b)
=(b²/2-a)/(b-a)-(a²/2-a)/(b-a)=(a+b)/2
E(x²)=∫F(x²)dx=∫(a到b)(x²-a)/(b-a)dx
=(x³/3-a)/(b-a) |(a到b)
=(b³/3-a)/(b-a)-(a³/3-a)/(b-a)=(a²+b²+ab)/3
所以D(x)=E(x²)-E(x)²
=(a²+b²+ab)/3-(a+b)²/4
=(a²+b²-2ab)/12=(b-a)²/12
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询