已知数列{An}的前N项和Sn=4n2+3n,求证{An}是等差数列

 我来答
黑科技1718
2022-09-04 · TA获得超过5857个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:80.9万
展开全部

设这个数列的第n项为an,前n项和为Sn.
当n≥2时,an=Sn-Sn-1
∴an=(4n^2+3n)-[4(n-1)^2+3(n-1)]=8n-1
当n=1时,a1=S1=4+3=7
由以上两种情况可知,对所有的自然数n,都有an=8n-1
又an+1-an=[8(n+1)-1]-(8n-1)=8
∴这个数列是首项为7,公差为8的等差数列.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式