如图所示,在△abc中,△abc的内角平分线或外角平分线交于点p,试探求下列各图中∠a
如图所示,在△ABC中,△ABC的内角平分线或外角平分线交于点P,试探求下列各图中∠A与∠P的数量关系,并加以说明。求你们拉...
如图所示,在△ABC中,△ABC的内角平分线或外角平分线交于点P,试探求下列各图中∠A与∠P的数量关系,并加以说明。
求你们拉 展开
求你们拉 展开
展开全部
(1)可以把∠A=α,作为已知,求∠P即可.根据三角形内角和定理以及外角的性质即可求解;
(2)(3)解法相同.解答:解:(1)β=90°+ 12α;(2)β= 12α;(3)β=90°- 12α.
下面选择(1)进行证明.
在图(1)中,根据三角形内角和定理可得:∠ABC+∠ACB=180°-∠A.
∵BP与CP是△ABC的角平分线,
∴∠PBC= 12∠ABC,∠PCB= 12∠ACB,
∴∠PCB+∠PCB= 12(∠ABC+∠ACB)=90°- 12α.
在△PBC中,∠BPC=180°-(∠PCB+∠PCB)=180°-(90°- 12α)=90°+ 12α.
∴β=90°+ 12α.点评:本题主要考查了三角形的内角和定理以及三角形的角平分线的定义.
最后一个:
∠P = 90-(1/2)∠A
过程
∠B外角 = ∠A +∠C
∠C外角 = ∠A+ ∠B
∠B外角+∠C外角 =∠ A +∠B+∠A+∠C = ∠A +180
又因为
∠P + (1/2) ∠B外角 + (1/2) ∠C外角 = 180
∠P + (1/2)(∠B外角 + ∠C外角)= 180
∠P + (1/2)(∠A +180)= 180
∠P + (1/2)∠A +90= 180
∠P = 180-90-(1/2)∠A
∠P = 90-(1/2)∠A
(2)(3)解法相同.解答:解:(1)β=90°+ 12α;(2)β= 12α;(3)β=90°- 12α.
下面选择(1)进行证明.
在图(1)中,根据三角形内角和定理可得:∠ABC+∠ACB=180°-∠A.
∵BP与CP是△ABC的角平分线,
∴∠PBC= 12∠ABC,∠PCB= 12∠ACB,
∴∠PCB+∠PCB= 12(∠ABC+∠ACB)=90°- 12α.
在△PBC中,∠BPC=180°-(∠PCB+∠PCB)=180°-(90°- 12α)=90°+ 12α.
∴β=90°+ 12α.点评:本题主要考查了三角形的内角和定理以及三角形的角平分线的定义.
最后一个:
∠P = 90-(1/2)∠A
过程
∠B外角 = ∠A +∠C
∠C外角 = ∠A+ ∠B
∠B外角+∠C外角 =∠ A +∠B+∠A+∠C = ∠A +180
又因为
∠P + (1/2) ∠B外角 + (1/2) ∠C外角 = 180
∠P + (1/2)(∠B外角 + ∠C外角)= 180
∠P + (1/2)(∠A +180)= 180
∠P + (1/2)∠A +90= 180
∠P = 180-90-(1/2)∠A
∠P = 90-(1/2)∠A
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我怎么看不到你的图呢?
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询