根号X分之一乘以arcsin根号X的不定积分怎么求.?
2个回答
展开全部
∫ arcsin(√x) / √x dx
令y²=x,2ydy=dx
原式= 2∫ arcsiny dy
= 2yarcsiny - 2∫ y/√(1-y²) dy,分部积分法
= 2√x*arcsin√x - 2(-1/2)∫ 1/√(1-y²) d(1-y²)
= 2√x*arcsin√x + 2√(1-y²) + C
= 2√(1-x) + 2√x*arcsin√x + C,6,=- polylog(2, exp(2*asin(x^(1/2))*i))*i - asin(x^(1/2))^2*i + 2*log(1 - exp(2*i*asin(x^(1/2))))*asin(x^(1/2)),2,
令y²=x,2ydy=dx
原式= 2∫ arcsiny dy
= 2yarcsiny - 2∫ y/√(1-y²) dy,分部积分法
= 2√x*arcsin√x - 2(-1/2)∫ 1/√(1-y²) d(1-y²)
= 2√x*arcsin√x + 2√(1-y²) + C
= 2√(1-x) + 2√x*arcsin√x + C,6,=- polylog(2, exp(2*asin(x^(1/2))*i))*i - asin(x^(1/2))^2*i + 2*log(1 - exp(2*i*asin(x^(1/2))))*asin(x^(1/2)),2,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询