(arcsinx)^2的不定积分
1个回答
展开全部
设 t = arcsinx,则 x = sint,dx = cost*dt.则:
∫(arcsinx)^2 * dx
=∫t^2 * cost * dt
=t^2 * sint - ∫sint * 2t * dt
=t^2 * sint - 2*∫(t*sint)*dt
=t^2 * sint - 2*[ t * (-cost) - ∫(-cost)*dt]
=t^2 * sint - 2*[-t * cost + sint]
=t^2 * sint + 2t * cost - 2 * sint + C
=(arcsinx)^2 * x + 2(arcsinx)*√(1-x^2) - 2x + C
∫(arcsinx)^2 * dx
=∫t^2 * cost * dt
=t^2 * sint - ∫sint * 2t * dt
=t^2 * sint - 2*∫(t*sint)*dt
=t^2 * sint - 2*[ t * (-cost) - ∫(-cost)*dt]
=t^2 * sint - 2*[-t * cost + sint]
=t^2 * sint + 2t * cost - 2 * sint + C
=(arcsinx)^2 * x + 2(arcsinx)*√(1-x^2) - 2x + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询