f(x)的导数是什么?
展开全部
f(x)=f(0)+f`bai(0)x就是一阶
f(x)=f(0)+f`(0)x+f``(0)x^2/2!就是二阶泰勒展开式
简单的说 多项式存在f(n个`)(0)x^(n) / n!就是n阶泰勒展开式
最后带上个余项,对于展开n项的泰勒式 皮雅诺余项是写o(x^n)
导数决定了函数的形状。如果有四阶导数大于0,也能得到不带余项的三阶展开式大于0。但是当奇数次导数大于0,就不一定了。
f(x)在x0处的切线方程为 y=f(x0)+f'(x0)(x-x0)
因为f''(x)>0,函数为凹函数,所以函数图像总是在切线的上方。
f(x)>=y(x)=f(x0)+f'(x0)(x-x0)
扩展资料:
泰勒公式是高等数学中的一个非常重要的内容,它将一些复杂的函数逼近近似地表示为简单的多项式函数,泰勒公式这种化繁为简的功能,使得它成为分析和研究许多数学问题的有力工具。
泰勒公式的几何意义是利用多项式函数来逼近原函数,由于多项式函数可以任意次求导,易于计算,且便于求解极值或者判断函数的性质,因此可以通过泰勒公式获取函数的信息,同时,对于这种近似,必须提供误差分析,来提供近似的可靠性。
参考资料来源:百度百科-泰勒公式
展开全部
我们要找出函数f(x)的导数。
首先,我们需要知道导数的定义和计算方法。
一个函数的导数是它在一个点的切线的斜率。
对于函数f(x),其导数通常表示为 f'(x) 或 df/dx。
对于多项式函数,我们通常使用链式法则、乘法法则和指数法则来计算其导数。
对于更复杂的函数,可能需要使用莱布尼茨法则或其他高级方法来计算。
但是,您没有提供函数f(x)的具体形式,所以我们无法给出具体的导数。
为了得到f(x)的导数,您需要提供更多关于f(x)的信息。
给定函数 f(x) = x^2 + 2x + 3 的导数为:f'(x) = 2*x + 2
首先,我们需要知道导数的定义和计算方法。
一个函数的导数是它在一个点的切线的斜率。
对于函数f(x),其导数通常表示为 f'(x) 或 df/dx。
对于多项式函数,我们通常使用链式法则、乘法法则和指数法则来计算其导数。
对于更复杂的函数,可能需要使用莱布尼茨法则或其他高级方法来计算。
但是,您没有提供函数f(x)的具体形式,所以我们无法给出具体的导数。
为了得到f(x)的导数,您需要提供更多关于f(x)的信息。
给定函数 f(x) = x^2 + 2x + 3 的导数为:f'(x) = 2*x + 2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |