四种求极限的方法

 我来答
信曼岚5h
2023-01-28 · TA获得超过941个赞
知道大有可为答主
回答量:7811
采纳率:99%
帮助的人:169万
展开全部

在极限都存在的情况下,和差积商的极限,等于极限的和差积商。用数学的话表达就是:

lim(A+B)limA+limB

lim(A-B)=limA-limB

limAB=limA×limB

lim(A/B)limA/limB

前提是以上各个极限都存在。

求极限基本方法有:

1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。

2、无穷大根式减去无穷大根式时,分子有理化。

3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。

基本方法有:

1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;

2、无穷大根式减去无穷大根式时,分子有理化,然后运用(1)中的方法;

3、运用两个特别极限;

4、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。它不是所向无敌,不可以代替其他所有方法,一楼言过其实。

5、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。

6、等阶无穷小代换,这种方法在国内甚嚣尘上,国外比较冷静。因为一要死背,不是值得推广的教学法;二是经常会出错,要特别小心。

7、夹挤法。这不是普遍方法,因为不可能放大、缩小后的结果都一样。

8、特殊情况下,化为积分计算。

9、其他极为特殊而不能普遍使用的方法。

拓展资料

极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。

如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想像,因此可以忽略不计。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式