抛物线常用结论
抛物线常用结论
第一类是常见的基本结论。
第二类是与圆有关的结论。
第三类是由焦点弦得出有关直线垂直的结论。
第四类是由焦点弦得出有关直线过定点的结论。
1、以焦点弦为直径的圆与准线相切(用抛物线的定义与梯形的中位线定理结合证明)。
2、1/|AF|+1/|BF|=2/p(p为焦点到准线的距离,下同)。
3、当且仅当焦点弦与抛物线的轴垂直(此时的焦点弦称为“通径”)时,焦点弦的长度取得最小值2p。
4、如果焦点弦的两个端点是A、B,那么向量OA与向量OB的数量积是-0.75p^2。
抛物线具有这样的性质,如果它们由反射光的材料制成,则平行于抛物线的对称轴行进并撞击其凹面的光被反射到其焦点,而不管抛物线在哪里发生反射。
相反,从焦点处的点源产生的光被反射成平行(“准直”)光束,使抛物线平行于对称轴。声音和其他形式的能量也会产生相同的效果。这种反射性质是抛物线的许多实际应用的基础。
抛物线四种方程的异同点:
1、原点在抛物线上,离心率e均为1 。
2、准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4。
3、对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py 方程的左端为x^2。
4、开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号 开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。
几何性质:
1、设抛物线上一点P的切线与准线相交于Q,F是抛物线的焦点,则PF⊥QF。且过P作PA垂直于准线,垂足为A,那么PQ平分∠APF。
2、过抛物线上一点P作准线的垂线PA,则∠APF的平分线与抛物线切于P。〈为性质(1)第二部分的逆定理〉从这条性质可以得出过抛物线上一点P作抛物线的切线的尺规作图方法。