d是高数里面的什么?

 我来答
生活的也乐趣多
高粉答主

2022-11-09 · 给休闲加点娱乐,让生活多一点快乐。
生活的也乐趣多
采纳数:184 获赞数:66217

向TA提问 私信TA
展开全部

高等数学中d是微分。

可以对任一变量微分,比如dy=y'dx,d/dx是对微分的商,可以叫对x的导数或者微商,先d才有d/dx。

一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。

微分历史:

早在希腊时期,人类已经开始讨论「无穷」、「极限」以及「无穷分割」等概念。这些都是微积分的中心思想;虽然这些讨论从现代的观点看有很多漏洞,有时现代人甚至觉得这些讨论的论证和结论都很荒谬,但无可否认,这些讨论是人类发展微积分的第一步 。

例如公元前五世纪,希腊的德谟克利特(Democritus)提出原子论:他认为宇宙万物是由极细的原子构成。在中国,《庄子.天下篇》中所言的「一尺之捶,日取其半,万世不竭」,亦指零是无穷小量。这些都是最早期人类对无穷、极限等概念的原始的描述。

其他关于无穷、极限的论述,还包括芝诺(Zeno)几个著名的悖论:其中一个悖论说一个人永远都追不上一只乌龟,因为当那人追到乌龟的出发点时,乌龟已经向前爬行了一小段路,当他再追完这一小段,乌龟又已经再向前爬行了一小段路。

芝诺说这样一追一赶的永远重覆下去,任何人都总追不上一只最慢的乌龟--当然,从现代的观点看,芝诺说的实在荒谬不过;他混淆了「无限」和「无限可分」的概念。人追乌龟经过的那段路纵然无限可分,其长度却是有限的;所以人仍然可以以有限的时间,走完这一段路。

然而这些荒谬的论述,开启了人类对无穷、极限等概念的探讨,对后世发展微积分有深远的历史意味。

另外值得一提的是,希腊时代的阿基米德(Archimedes)已经懂得用无穷分割的方法正确地计算一些面积,这跟现代积分的观念已经很相似。由此可见,在历史上,积分观念的形成比微分还要早--这跟课程上往往先讨论微分再讨论积分刚刚相反。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式