设n阶矩阵A满足A方等于A,并且A不等于E,证明A的行列式等于0?
1个回答
展开全部
AA=A => AA-AE=O => A(A-E)=O =>|A|*|A-E|=0
但A≠E,所以|A|=0,1,设n阶矩阵A满足A方等于A,并且A不等于E,证明A的行列式等于0
急!大家帮帮忙!有加分!
但A≠E,所以|A|=0,1,设n阶矩阵A满足A方等于A,并且A不等于E,证明A的行列式等于0
急!大家帮帮忙!有加分!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
潮流计算是一种用于分析和计算电力系统中有功功率、无功功率、电压和电流分布的经典方法。它是在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算电力系统中各节点的有功功率、无功功率、电压和电流的实际运行情况。潮流计算主要用于研究电力系统...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询