因式定理,分解因式:x^4+2x^3y-3x^2y^2-4xy^3+4y^4
展开全部
解:
原式=(x^4+2x^3 y-3x^2 y^2)-(4xy^3-4y^4) 1
=x^2(x^2+2xy-3y^2)-4y^3(x-y) 2
=x^2(x+3y)(x-y)-4y^3(x-y) 3
=(x-y)(x^3+3x^2 y)-(x-y)(4y^3) 4
=(x-y)(x^3+3x^2 y-4y^3) 5
=(x-y)(x-y)(x+2y)^2 6*
=(x-y)^2(x+2y)^2 7
*注:试根发现当x=y,x^3+3x^2 y-4y^3=0,故x^3+3x^2 y-4y^3=0有因式(x-y)
还算满意吗?
原式=(x^4+2x^3 y-3x^2 y^2)-(4xy^3-4y^4) 1
=x^2(x^2+2xy-3y^2)-4y^3(x-y) 2
=x^2(x+3y)(x-y)-4y^3(x-y) 3
=(x-y)(x^3+3x^2 y)-(x-y)(4y^3) 4
=(x-y)(x^3+3x^2 y-4y^3) 5
=(x-y)(x-y)(x+2y)^2 6*
=(x-y)^2(x+2y)^2 7
*注:试根发现当x=y,x^3+3x^2 y-4y^3=0,故x^3+3x^2 y-4y^3=0有因式(x-y)
还算满意吗?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询