概率论中E的含义是什么?
E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn)
X1,X2,X3,……,Xn为这几个数据,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。
需要注意的是,期望值并不一定等同于常识中的拿脊知“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。)
如果X是连续的随机变量,存在一个相应的概率密度函数 ,若积分 绝对收敛,那么X的期望值可以计算为: ,是针对于连续的随机变量的,与离散随机变量的期望值的算法同出一辙,由于输出值是连续的,所以把求和改成了积分。
扩展资料:
在一般情况下,两个随机变量的积的期望值不等于这两个随机变量的野裂期望值的积。
特殊情消消况是当这两个随机变量是相互独立的时候 (也就是说一个随机变量的输出不会影响另一个随机变量的输出。)
例如,美国的轮盘中常用的轮盘上有38个数字,每一个数字被选中的概率都是相等的。赌注一般押在其中某一个数字上,如果轮盘的输出值和这个数字相等,那么下赌者可以将相当于赌注35倍的奖金(原注不包含在内),若输出值和下压数字不同,则赌注就输掉了。
考虑到38种所有的可能结果,然后这里我们的设定的期望目标是“赢钱”,则因此,讨论赢或输两种预想状态的话,以1美元赌注押一个数字上,则获利的期望值为:赢的“概率38分之1,能获得35元”,加上“输1元的情况37种”,结果约等于-0.0526美元。
也就是说,平均起来每赌1美元就会输掉5美分,即美式轮盘以1美元作赌注的期望值为 负0.0526美元。
2021-01-25 广告