怎么求方差、标准差、平均数
展开全部
若x1,x2,x3.xn的平均数为m
则方差s^2=1/n[(x1-m)^2+(x2-m)^2+.+(xn-m)^2]
标准差s=√1/n[(x1-m)^2+(x2-m)^2+.+(xn-m)^2]
方差公式是一个数学公式,是数学统计学中的重要公式,应用于生活中各种事情,方差越小,代表这组数据越稳定,方差越大,代表这组数据越不稳定
1.设C为常数,则D(C) = 0(常数无波动);
2. D(CX )=C2D(X ) (常数平方提取,C为常数,X为随机变量);
证:特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)
3.若X 、Y 相互独立,则证:记则
前面两项恰为 D(X)和D(Y),第三项展开后为
当X、Y 相互独立时,
故第三项为零。
特别地
独立前提的逐项求和,可推广到有限项。
则方差s^2=1/n[(x1-m)^2+(x2-m)^2+.+(xn-m)^2]
标准差s=√1/n[(x1-m)^2+(x2-m)^2+.+(xn-m)^2]
方差公式是一个数学公式,是数学统计学中的重要公式,应用于生活中各种事情,方差越小,代表这组数据越稳定,方差越大,代表这组数据越不稳定
1.设C为常数,则D(C) = 0(常数无波动);
2. D(CX )=C2D(X ) (常数平方提取,C为常数,X为随机变量);
证:特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)
3.若X 、Y 相互独立,则证:记则
前面两项恰为 D(X)和D(Y),第三项展开后为
当X、Y 相互独立时,
故第三项为零。
特别地
独立前提的逐项求和,可推广到有限项。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询