空集的定义
2个回答
展开全部
空集是指不含任何元素的集合。空集是任何集合的子集,是任何非空集合的真子集。空集不是无;它是内部没有元素的集合。
可以将集合想象成一个装有元素的袋子,而空集的袋子是空的,但袋子本身确实是存在的。
用符号Ø或者{ }表示。
注意:{Ø}是有一个Ø元素的集合,而不是空集。
在LaTeX中空集表示代码 \emptyset 。
0是一个数,不是集合。
{0}是一个集合,集合只有0这个元素。
Ø是一个集合,但是不含任何元素。
{Ø}是一个非空集合,集合只有空集这个元素。
当两圆相离时,它们的公共点所组成的集合就是空集;
当一元二次方程的根的判别式值△<0时,它的实数根所组成的集合也是空集。考虑到空集是实数线(或任意拓扑空间)的子集,空集既是开集、又是闭集。空集的边界点集合是空集,是它的子集,因此空集是闭集。空集的内点集合也是空集,是它的子集,因此空集是开集。另外,因为所有的有限集合是紧致的,所以空集是紧致集合。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询