如何计算数列的递增公式是什么?
1个回答
展开全部
递增计算公式是:(首项+末项)×(项数÷2)。
首项×项数+【项数(项数-1)×公差】/2。
{【2首项+(项数-1)×公差】项数}/2。
n = 100x(1+0.05)^n。
Sn = a1+a2+...+an。
= 100x(1+0.05) x[ (1+0.05)^n - 1 ] /[ (1+0.05) -1 ]。
=2100 x [ (1+0.05)^n - 1 ]。
到n年,加起来的总数是多少。
=Sn。
=2100 x [ (1+0.05)^n - 1 ]。
这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……(2n-1)。
等差数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。注意: 以上n均属于正整数。
其他推论:
① 和=(首项+末项)×项数÷2。
②项数=(末项-首项)÷公差+1。
③首项=2x和÷项数-末项或末项-公差×(项数-1)。
④末项=2x和÷项数-首项。
⑤末项=首项+(项数-1)×公差。
⑥2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询