高一上册数学必修四知识点总结

 我来答
实用干货君
2023-02-20 · TA获得超过458个赞
知道小有建树答主
回答量:958
采纳率:100%
帮助的人:77.4万
展开全部
【 #高一# 导语】高一新生要作好充分思想准备,以自信、宽容的心态,尽快融入集体,适应新同学、适应新校园环境、适应与初中迥异的纪律制度。记住:是你主动地适应环境,而不是环境适应你。因为你走向社会参加工作也得适应社会。以下内容是 无 为你整理的《高一上册数学必修四知识点总结》,希望你不负时光,努力向前,加油!

1.高一上册数学必修四知识点总结


  平面的一般式方程

  Ax+By+Cz+D=0

  其中n=(A,B,C)是平面的法向量,D是将平面平移到坐标原点所需距离(所以D=0时,平面过原点)

  向量的模(长度)

  给定一个向量V(x,y,z),则|V|=sqrt(x*x+y*y+z*z)

  向量的点积(内积)

  给定两个向量V1(x1,y1,z1)和V2(x2,y2,z2)则他们的内积是

  V1V2=x1x2+y1y2+z1z2

2.高一上册数学必修四知识点总结


  1、平面三角形证法

  在△ABC中,BC=a,AC=b,AB=c,作AD⊥BC于D,则AD=c*sinB,DC=a-BD=a-c*cosB

  在Rt△ACD中,

  b2=AD2+DC2=(c*sinB)2+(a-c*cosB)2

  =c2sin2B+a2-2ac*cosB+c2cos2B

  =c2(sin2B+cos2B)+a2-2ac*cosB

  =c2+a2-2ac*cosB

  2、平面向量证法

  有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)

  ∴c·c=(a+b)·(a+b)

  ∴c2=a·a+2a·b+b·b∴c2=a2+b2+2|a||b|cos(π-θ)

  又∵cos(π-θ)=-cosθ(诱导公式)

  ∴c2=a2+b2-2|a||b|cosθ

  此即c2=a2+b2-2abcosC

  即cosC=(a2+b2-c2)/2*a*b

3.高一上册数学必修四知识点总结

  1.函数的奇偶性。

  (1)若f(x)是偶函数,那么f(x)=f(-x)。

  (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。

  (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0)。

  (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性。

  (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性。

  2.复合函数的有关问题。

  (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

  (2)复合函数的单调性由“同增异减”判定。

  3.函数图像(或方程曲线的对称性)。

  (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上。

  (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然。

  (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。

  (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0。

  (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称。

  4.函数的周期性。

  (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数。

  (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数。

  (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数。

  (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数。

  5.判断对应是否为映射时,抓住两点。

  (1)A中元素必须都有象且。

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象。

  6.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

  7.对于反函数,应掌握以下一些结论。

  (1)定义域上的单调函数必有反函数。

  (2)奇函数的反函数也是奇函数。

  (3)定义域为非单元素集的偶函数不存在反函数。

  (4)周期函数不存在反函数。

  (5)互为反函数的两个函数具有相同的单调性。

  (6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。

  8.处理二次函数的问题勿忘数形结合。

  二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系。

  9.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题。

  10.恒成立问题的处理方法。

  (1)分离参数法。

  (2)转化为一元二次方程的根的分布列不等式(组)求解。

4.高一上册数学必修四知识点总结


  定义:

  形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

  定义域和值域:

  当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域

  性质:

  对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

  首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

  排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

  排除了为0这种可能,即对于x0的所有实数,q不能是偶数;

  排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

  总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:

  如果a为任意实数,则函数的定义域为大于0的所有实数;

  如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

  在x大于0时,函数的值域总是大于0的实数。

  在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

  而只有a为正数,0才进入函数的值域。

  由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.

  可以看到:

  (1)所有的图形都通过(1,1)这点。

  (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

  (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

  (4)当a小于0时,a越小,图形倾斜程度越大。

  (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

  (6)显然幂函数_。

5.高一上册数学必修四知识点总结


  【公式一】

  设α为任意角,终边相同的角的同一三角函数的值相等:

  sin(2kπ+α)=sinα(k∈Z)

  cos(2kπ+α)=cosα(k∈Z)

  tan(2kπ+α)=tanα(k∈Z)

  cot(2kπ+α)=cotα(k∈Z)

  【公式二】

  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  【公式三】

  任意角α与-α的三角函数值之间的关系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  【公式四】

  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  【公式五】

  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  【公式六】

  π/2±α及3π/2±α与α的三角函数值之间的关系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  (以上k∈Z)

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式