为什么定积分一定存在不定积分呢?

 我来答
教育小百科达人
2023-01-22 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:479万
展开全部

具体回答如下:

∫e^√xdx

=2∫√xe^√xd√x

=2∫√xde^(√x)

=2√xe^(√x)-2∫e^√xd√x

=2√xe^(√x)-2e^(√x)+C

不定积分的意义:

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。

若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

百度网友ba4ee4b9e
2023-01-22 · 超过43用户采纳过TA的回答
知道小有建树答主
回答量:189
采纳率:100%
帮助的人:9万
展开全部
定积分和不定积分之间存在导函数关系,定积分是对不定积分求导后得到的函数。
所以当知道了一个函数的定积分,可以用反函数法(即求导)来求出该函数的不定积分,这就是定积分存在不定积分的原因。
简单来说,求不定积分是求函数的原函数,求定积分是求函数的导函数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式