为什么绝对收敛的级数一定发散?
展开全部
假设数列an是收敛的,那么有lim(n→∞)Sn=C(C是常数)。那么lim(n→∞dao)an=lim(n→∞)(S(n+1)-Sn)=lim(n→∞)S(n+1)-lim(n→∞)Sn=C-C=0。
所以收敛级数的通项当n→∞时,极限必然是0当。而n→∞时,1/n→0。那么cos1/n→cos0=1,通项的极限不是0,所以∑(n=1,∞)cos1/n发散。
收敛区间计算事项:
一个绝对收敛级数的正数项与负数项所组成的级数都是收敛的。一个条件收敛级数的正数项与负数项所组成的级数都是发散的。
对于任意给定的正数tol,可以找到合适的区间(譬如坐标绝对值充分小),使得这个区间内任意三个点组成的三角形面积都小于tol。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询