什么是线性空间中的度量矩阵?

 我来答
书尽胸臆
高粉答主

2023-06-26 · 精读书,爱读书,分享书,书中自有颜如玉,书中自有黄金屋
书尽胸臆
采纳数:729 获赞数:58966

向TA提问 私信TA
展开全部

由基的内积按一定规则构成的矩阵,设V是n维欧氏空间,ε1,ε2,…,εn是V的基,n阶矩阵A=((εi,εj))称为基ε1,ε2,…,εn的度量矩阵.设η1,η2,…,ηn是V的另外一个基,若(η1,η2,…,ηn)=(ε1,ε2,…,εn)C,其中C是基ε1,ε2,…,εn到基η1,η2,…,ηn的过渡矩阵,则B=((ηi,ηj))=C′AC,即不同基的度量矩阵是合同的。

扩展资料

度量矩阵的意义

1、线性空间

对于线性空间中的任意一个向量的表示由基(相当于度量单位)和坐标(相当于具体的尺度),基既然作为度量标准了,当然要求对每一个向量都适用,同时这个标准本身也应该尽可能的简洁,那么就得到了基定义的两点约束。 

(1)、基的组成向量线性无关;

(2)、线性空间中的任一个向量都可以由基的线性表示。

基作为一种“计量标准”,当然可能会存在多种形式,只要满足上面的两点条件,因而就有必要解决不同的度量标准之间的转换关系,从而得到过渡矩阵的概念,同时可以使用这种转换关系(过渡矩阵)去完成度量量(坐标)之间的转换。

2、线性交换

在完成了线性空间这一对象的认识和表达之后,下面需要研究对象和对象之间的关系。这里主要是线性变换,线性变换针对于实际对象主要完成类似于旋转和尺度变换方面的操作,而这种操作也牵涉到表达的问题。

为了保持与空间的一致性,我们也同样是在在特定的基下来表示,从而线性变换就具体化为一个变换矩阵,并且,在不同的基下对应的变换矩阵当然也不相同,这里的不同的变换矩阵的关系就是相似的概念。

到此,我们完成了空间中向量的表示和线性变换的矩阵表达。这里涉及了基、坐标、过渡矩阵、变换矩阵、相似矩阵这几个重要的概念。上面算是内涵上的认识,下面我们需要知道线性空间里究竟有些什么东西,它是如何组成的,各个组成成分之间的关系,也就是空间的结构性方面的东西。

光点科技
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件... 点击进入详情页
本回答由光点科技提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式