
这题怎么算出结果?
展开全部
这是可分离二元积分,分别求出然后相乘即可。
∫(0,π/2)dθ=π/2;
∫(0,1)[√(1-r²)-1]rdr
=∫(0,1)√(1-r²)rdr-∫(0,1)
rdr,
=1/2.∫(0,1)√(1-r²)dr²-(1/2)r²|(0,1)
=-1/2.∫(0,1)√(1-r²)d(1-r²)-1/2
=(-1/2)(2/3)(1-r²)^(3/2)|(0,1)-1/2
=1/3-1/2
=-1/6
结果-(π/2)(-1/6)=π/12
∫(0,π/2)dθ=π/2;
∫(0,1)[√(1-r²)-1]rdr
=∫(0,1)√(1-r²)rdr-∫(0,1)
rdr,
=1/2.∫(0,1)√(1-r²)dr²-(1/2)r²|(0,1)
=-1/2.∫(0,1)√(1-r²)d(1-r²)-1/2
=(-1/2)(2/3)(1-r²)^(3/2)|(0,1)-1/2
=1/3-1/2
=-1/6
结果-(π/2)(-1/6)=π/12
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询