(a+ b) n次方是如何推导的?
1个回答
展开全部
(a+b)n次方=C(n,0)a(n次方)+C(n,1)a(n-1次方)b(1次方)+…+C(n,r)a(n-r次方)b(r次方)+…+C(n,n)b(n次方)(n∈N*)
C(n,0)表示从n个中取0个。
扩展资料
二项式定理(英语:Binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。
二项式定理最初用于开高次方。在中国,成书于1世纪的《九章算术》提出了世界上最早的多位正整数开平方、开立方的一般程序。11世纪中叶,贾宪在其《释锁算书》中给出了“开方作法本原图”(如图1),满足了三次以上开方的需要。此图即为直到六次幂的二项式系数表,但是,贾宪并未给出二项式系数的一般公式,因而未能建立一般正整数次幂的二项式定理。
参考资料二项式定理_百度百科
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询