周期函数相加一定是周期函数吗?

 我来答
灵兽研究院
高粉答主

2023-07-29 · 曾经热爱《数码宝贝》的少年长大了~ 创作了一个产生灵兽的奇异...
灵兽研究院
采纳数:917 获赞数:131821

向TA提问 私信TA
展开全部

两个周期函数相加不一定是周期函数。

这里通过反证法进行论证:

y=sin(x)和y=sin((√3)x)都是周期函数,但是两个周期函数相加的结果为:y=sin(x)+sin((√3)x)不是周期函数,这里缺少了一个条件,那就是两个函数的周期比属于有理数。

完整的命题为:设f1(x)=sin a1x,f2(x)=cos a2x,则f1(x)与f2(x)之和、差、积是周期函数的充要条件是a1/a2∈Q。


扩展资料:

周期函数的判定方法分为以下几步:

1、判断f(x)的定义域是否有界;

2、根据定义讨论函数的周期性可知非零实数T在关系式f(x+T)= f(x)中是与x无关的,故讨论时可通过解关于T的方程f(x+T)- f(x)=0,若能解出与x无关的非零常数T便可断定函数f(x)是周期函数,若这样的T不存在则f(x)为非周期函数。

3、一般用反证法证明。(若f(x)是周期函数,推出矛盾,从而得出f(x)是非周期函数)。

参考资料来源:百度百科-周期函数

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式