如何区分一类曲面积分与一类曲线积分呢?
有两种方法,分别如下:
第一种方法:如果从二重积分的式子上来看,哪个变量(如x)的上下限都是常数而另一个变量(如y)上下限全是某个(如关于x的)函数,就是哪个(x)型区域,如果从区域的图像上看,看x和y轴方向上哪一个变量的取值范围是被常数确定就是哪个类型的。
第二种方法:打算先对x积分则用平行于x轴的直线分割区域,以上下两切点为分界点,左边的曲线为x=φ1(y),右边的曲线为x=φ2(y),不过如果非要区分的话,曲边形有平行于x轴的直线则为Y型区域;X型则反过来。
勒贝格积分
勒贝格积分的出现源于概率论等理论中对更为不规则的函数的处理需要。黎曼积分无法处理这些函数的积分问题。因此,需要更为广义上的积分概念,使得更多的函数能够定义积分。
同时,对于黎曼可积的函数,新积分的定义不应当与之冲突。勒贝格积分就是这样的一种积分。 黎曼积分对初等函数和分段连续的函数定义了积分的概念,勒贝格积分则将积分的定义推广到测度空间里。
勒贝格积分的概念定义在测度的概念上。测度是日常概念中测量长度、面积的推广,将其以公理化的方式定义。黎曼积分实际可以看成是用一系列矩形来尽可能铺满函数曲线下方的图形,而每个矩形的面积是长乘宽,或者说是两个区间之长度的乘积。
测度为更一般的空间中的集合定义了类似长度的概念,从而能够“测量”更不规则的函数曲线下方图形的面积,从而定义积分。
在一维实空间中,一个区间A= [a,b] 的勒贝格测度μ(A)是区间的右端值减去左端值,b−a。这使得勒贝格积分和正常意义上的黎曼积分相兼容。在更复杂的情况下,积分的集合可以更加复杂,不再是区间,甚至不再是区间的交集或并集,其“长度”则由测度来给出。