n趋向于无穷大时,-1/ n是发散级数吗?

 我来答
小小芝麻大大梦
高粉答主

2023-06-05 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:995万
展开全部

发散,1/n 是调和级数,是发散的。那 -1/n还是发散,因为乘以1个非零常数,不改变级数的敛散性。证明方法和证明1/n发散一样,[(-1)^n](1/n)是收敛的。

发散级数指不收敛的级数。一个数项级数如果不收敛,就称为发散,此级数称为发散级数。一个函数项级数如果在(各项的定义域内)某点不收敛,就称在此点发散,此点称为该级数的发散点。按照通常级数收敛与发散的定义,发散级数是没有意义的。

扩展资料:

级数求和主要是针对发散级数提出来的。每一种求和法都能使某些发散级数有和,同时又希望按照它,所有的收敛级数都是可和的,并且所求出的和与其柯西和相等,这样的级数求和方法就称为正则的。级数的正则求和法是收敛性(柯西和)概念的直接推广,在调和分析、通近论等数学学科中有很多应用。

每一种有意义的级数求和法表面上都有很重的主观定义色彩,但在数学内部多半都可找到它的深刻背景,像阿贝尔求和法,源于关于泰勒级数的阿贝尔极限定理;而算术平均求和法,就与傅里叶级数部分和的性态有关。

函数收敛

定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。

收敛的定义方式很好的体现了数学分析的精神实质。

如果给定一个定义在区间i上的函数列,u1(x), u2(x) ,u3(x)......至un(x)....... 则由这函数列构成的表达式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴称为定义在区间i上的(函数项)无穷级数,简称(函数项)级数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式