如何计算二重积分
计算二重积分的基本思路是将其化作累次积分(也即两次定积分),要把二重积分化为累次积分,有两个主要的方式:一是直接使用直角坐标,二是使用极坐标。
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。
扩展知识
二重积分的提出者——约翰·卡尔·弗里德里希·高斯,(1777年4月30日—1855年2月23日),生于不伦瑞克,卒于哥廷根,是哥廷根学派的先驱之一。
约翰·卡尔·弗里德里希·高斯的成就遍布于数学的各个领域,在内蕴几何、数论、双曲几何、微分几何、超几何级数、复分析以及椭圆分析等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。
约翰·卡尔·弗里德里希·高斯幼时家境贫困,但聪明异常,1792年,在当地公爵的资助下,不满15岁的高斯进入了卡罗琳学院学习。在那里,高斯开始对高等数学作研究。独立发现了二项式定理的一般形式、数论上的“二次互反法则”(Law of Quadratic Reciprocity)、“素数分布定理”(prime numer theorem)、及“算术几何平均”(arithmetic-geometric mean)。