谁会初三数学十字相乘法?

我们老师说十字相乘法是人教版的,现在新课标已经淘汰了......但是我的许多练习题上都有关于十字相乘法的题,老师又不教我们,555怎么办,谁告诉我什么是十字相乘法,做题时... 我们老师说十字相乘法是人教版的,现在新课标已经淘汰了......
但是我的许多练习题上都有关于十字相乘法的题,老师又不教我们,555
怎么办,谁告诉我什么是十字相乘法,做题时有什么技巧吗
谁会就回啊!!!!!越详细越好!!!
展开
 我来答
百度网友53684d816
2006-10-31
知道答主
回答量:33
采纳率:0%
帮助的人:0
展开全部
、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
5、十字相乘法解题实例:
1)、 用十字相乘法解一些简单常见的题目
例1把m²+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为 1 -2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题
解: 因为 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解: 因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y
解: 因为 2 -9y
7 ╳ -2y
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3) 4y -3
7y ╳ -1
=10x²-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]
解法二、10x²-27xy-28y²-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].
例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0
分析:2a²–ab-b²可以用十字相乘法进行因式分解
解:x²- 3ax + 2a²–ab -b²=0
x²- 3ax +(2a²–ab - b²)=0
x²- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳ +b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳ -(a-b)
所以 x1=2a+b x2=a-b

两种相关联的变量之间的二次函数的关系,可以用三种不同形式的解析式表示:一般式、顶点式、交点式
交点式.
利用配方法,把二次函数的一般式变形为
Y=a[(x+b/2a)^2-(b^2-4ac)/4a^2]
应用平方差公式对右端进行因式分解,得
Y=a[x+b/2a+√b^2-4ac/2a][x+b/2a-√b^2-4ac/2a]
=a[x-(-b-√b^2-4ac)/2a][x-(-b+√b^2-4ac)/2a]
因一元二次方程ax^2+bx+c=0的两根分别为x1,2=(-b±√b^2-4ac)/2a
所以上式可写成y=a(x-x1)(x-x2),其中x1,x2是方程ax^2+bx+c=0的两个根
因x1,x2恰为此函数图象与x轴两交点(x1,0),(x2,0)的横坐标,故我们把函数y=a(x-x1)(x-x2)叫做函数的交点式.
在解决与二次函数的图象和x轴交点坐标有关的问题时,使用交点式较为方便.
二次函数的交点式还可利用下列变形方法求得:
设方程ax^2+bx+c=0的两根分别为x1,x2
根据根与系数的关系x1+x2=-b/a,x1x2=c/a,
有b/a=-(x1+x2),a/c=x1x2
∴y=ax^2+bx+c=a[x^2+b/a*x+c/a]
=a[x^2-(x1+x2)x+x1x2]=a(x-x1)(x-x2)
参考资料:http://zhidao.baidu.com/question/13484053.html?si=1
ggfhfcgy
2006-10-30 · TA获得超过1453个赞
知道答主
回答量:172
采纳率:0%
帮助的人:114万
展开全部
买本数学竞赛方面的资料,有详细的内容
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
敬力十足
2006-10-30 · TA获得超过458个赞
知道答主
回答量:241
采纳率:0%
帮助的人:0
展开全部
十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解。
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
5、十字相乘法解题实例:
1)、 用十字相乘法解一些简单常见的题目
例1把m²+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为 1 -2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题
解: 因为 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解: 因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y
解: 因为 2 -9y
7 ╳ -2y
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3) 4y -3
7y ╳ -1
=10x²-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]
解法二、10x²-27xy-28y²-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].
例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0
分析:2a²–ab-b²可以用十字相乘法进行因式分解
解:x²- 3ax + 2a²–ab -b²=0
x²- 3ax +(2a²–ab - b²)=0
x²- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳ +b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳ -(a-b)
所以 x1=2a+b x2=a-b

参考资料: http://blogcup.com/b2/23346/archives/2005/190129.shtml

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
人不知G59ac
2006-10-31
知道答主
回答量:8
采纳率:0%
帮助的人:0
展开全部
题」 分解因式:2x2+3xy+y2-x-2y-3.

[误解] 原式=(2x+y)(x+y)-(x+2y)-3.

[正解一] 拆项分组

原式=(2x2+2xy+2x)+(y2+xy+y)+(-3x-3y-3)

=2x(x+y+1)+y(x+y+1)-3(x+y+1)

=(x+y+1)(2x+y-3)。

[正解二] 把多项式整理为关于字母x的二次三项式,用十字相乘法分解之。

原式=2x2+(3y-1)x+(y2-2y-3)

=2x2+(3y-1)x+(y-3)(y+1)

=(x+y+1)(2x+y-3)。

[正解三] 待定系数法:

∵2x2+3xy+y2-x-2y-3=(2x+y)(x+y)-x-2y-3 (1)

设原式=[(2x+y)+m][(x+y)+n]

=(2x+y)(x+y)+m(x+y)+n(2x+y)+mn

=(2x+y)(x+y)+(m+2n)x+(m+n)y+mn (2)

比较(1)、(2)两式中对应项的系数,得

∴原式=(2x+y-3)(x+y+1)。

[错因分析与解题指导]

[误解]只做了一步,做不下去了。

[正解]中提供了三种解法,灵活应用分组分解、十字相乘等方法,使问题得到解决。

[练习题]

分解因式:

1.x2+xy-6y2+x+13y-6.

2.x2+3xy+2y2-x-3y-2

[练习题答案]

1.(x+3y-2)(x-2y+3)

2.(x+y-2)(x+2y+1)

参考资料: http://www.mxms.net/html/5/38/266/268/2006/3/ga0273465624102360021344-0.htm

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
胥英纵b5750
2006-10-31 · TA获得超过2040个赞
知道小有建树答主
回答量:722
采纳率:0%
帮助的人:500万
展开全部
你按下面的方法写

比如x²- 4x +3=0
X的系数------常数项
1------------ -3
1------------ -1

十字相乘 成为 1*-1 +1*-3 =-4
而这里的-4就是一次项的系数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
blue_梦想
2006-11-09 · TA获得超过182个赞
知道小有建树答主
回答量:209
采纳率:0%
帮助的人:202万
展开全部
你可以用配方法,自己总结出十字相乘发来。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式