求逆矩阵的方法
求逆矩阵的方法介绍如下:
求逆矩阵有3种方法为:伴随矩阵法、初等变换法和待定系数法。
1、伴随矩阵,是一个由一个代数余子式组成的矩阵,该矩阵有一个矩阵组成。
2、待定系数法,顾名思义就是对未知数进行求解。用一个新的包含未定因子的多项式来表达多项式,从而获得一个恒等式。接着,利用恒等式的特性,推导出一类系数必须满足的方程或方程,再由方程组或方程组得到待确定的系数,或确定各系数之间的对应关系,称为待定系数法。
3、矩阵的初等变换可以看成是一个方程组的方程之间两两消去的过程。从初中解二、三、四元一次方程的过程来看,消去的过程对方程的解没有任何影响,事实上,消去前和后的方程组都是等效的,而且它们之间的关系也是一样的。
逆矩阵
设A是一个n阶矩阵,若存在另一个n阶矩阵B,使得: AB=BA=E ,则称方阵A可逆,并称方阵B是A的逆矩阵。A与B的地位是平等的,故A、B两矩阵互为逆矩阵,也称A是B的逆矩阵。零矩阵是不可逆的,即取不到B,使OB=BO=E。
若矩阵A是可逆的,则A的逆矩阵是唯一的,并记作A的逆矩阵为A-1。对n阶方阵A,若r(A)=n,则称A为满秩矩阵或非奇异矩阵。任何一个满秩矩阵都能通过有限次初等行变换化为单位矩阵。满秩矩阵A的逆矩阵A可以表示成有限个初等矩阵的乘积。