余子式和代数余子式有三个区别:指代不同、特点不同、用处不同。
一、指代不同
1、余子式:行列式的阶数越低,越容易计算。因此,我们自然会问一个高阶行列式能否转换成低阶行列式进行计算。
2、代数余子式:在第n阶行列式中,去掉元素a的另一行和e列ₒₑI后,剩下的n-1阶行列式称为元素a-I的余子式
二、特点不同
1、余子式:关于一个k阶子式的余子式,是A去掉了这个k阶子式所在的行与列之后得到的(n-k)×(n-k)矩阵的行列式。
2、代数余子式:元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。
三、用处不同
1、余子式:转置矩阵称为A的伴随矩阵。伴随矩阵类似于逆矩阵,当A可逆时可用来计算A的逆矩阵。
2、代数余子式:在计算元素的代数余子式时,首先要注意不要忽略余子式的代数符号。当计算一行(或一列)的元素余因子的线性组合时,可以直接计算每个余因子,然后将其求和。
一、指代不同
1、余子式:行列式的阶越低越容易计算,于是很自然地提出,能否把高阶行列式转换为低阶行列式来计算。
2、代数余子式:在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式
二、特点不同
1、余子式:关于一个k阶子式的余子式,是A去掉了这个k阶子式所在的行与列之后得到的(n-k)×(n-k)矩阵的行列式。
2、代数余子式:元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。
三、用处不同
1、余子式:转置矩阵称为A的伴随矩阵,伴随矩阵类似于逆矩阵,并且当A可逆时可以用来计算它的逆矩阵。
2、代数余子式:计算元素的代数余子式时,首先要注意不要漏掉代数余子式所带的代数符号 。计算某一行(或列)的元素代数余子式的线性组合的值时,尽管直接求出每个代数余子式的值,再求和也是可行的。
参考资料来源:百度百科-代数余子式
参考资料来源:百度百科-余子式
将方阵A的一行与一列去掉之后所得到的余子式可用来获得相应的代数余子式,后者在计算方阵的行列式和逆时会派上用场。