已知函数f(x)=2acos^2x+bsinx*cosx,且f(0)=2,f(π/3)=1/2+√3/2。求f(x)的最大值和最小值

(2)若α-β≠kπ(k∈Z),且f(α)=f(β),求tan(α+β)的值... (2)若α-β≠kπ(k∈Z),且f(α)=f(β),求tan
(α+β)的值
展开
soso7410
2010-04-11 · TA获得超过1.4万个赞
知道大有可为答主
回答量:1907
采纳率:0%
帮助的人:3216万
展开全部
(1)
先化简f(x),得
f(x)=a*(1+cos2x)+b*(1/2)*sin2x
=a+a*cos2x+(b/2)*sin2x
∵f(0)=2
∴a+a=2,得a=1
∵f(π/3)=1/2+√3/2
∴a-(a/2)+b*√3/4=1/2+b*√3/4
=1/2+√3/2
∴b=2
∴f(x)
=1+cos2x+sin2x
=1+√2*sin(2x+π/4)
从而f(x)=sin2x+cos2x+1=√2sin(2x+π/4)+1≥1-√2
所以f(x)最小值为1-√2 同理最大值1+√2

(2)由f(α)=f(β)得sin(2α+π/4)=sin(2β+π/4)
∵α-β≠kπ,(k∈Z)
∴2α+π/4=(2k+1)π-(2β+π/4)
即α+β=kπ+π/4
∴tan(α+β)=1
陇西才神
2010-04-11 · TA获得超过1740个赞
知道小有建树答主
回答量:154
采纳率:100%
帮助的人:209万
展开全部
1,将x=0,y=2代入函数求的a=1;同理代入f(π/3)=1/2+√3/2得b=2。所以,
f(x)=2cos^2x+2sinx*cosx
=cos2x + 1 + sin2x
=(√2)sin(2x+π/4) + 1.
因为sin(2x+π/4)∈[-1,1],所以函数最大值和最小值分别为1+√2和1-√2。

2.f(x)的周期是π,在x=0时取得最大值为2.
α-β≠kπ(k∈Z),说明α和β不是相距整数个周期的数,那么α和β就只能是关于对称轴对称的数。所以(α+β)一定是某个对称轴的横坐标值的二倍。
f(x)的对称轴方程为:x=k(π/2)(k∈Z),所以α+β=kπ;
则tan(α+β)=tankπ=0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式