在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么可以用数学语言表达:a²+b²=c²。勾股定理是余弦定理中的一个特例。
欧几里得证明法
在欧几里得的《几何原本》一书中给出勾股定理的以下证明。设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。
证明的思路为:从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,把上方的两个正方形,通过等高同底的三角形,以其面积关系,转换成下方两个同等面积的长方形。
设△ABC为一直角三角形,其直角为∠CAB。
其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。
画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。
分别连接CF、AD,形成△BCF、△BDA。
∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。
∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。
因为AB=FB,BD=BC,所以△ABD≌△FBC。
因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。
因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。
因此四边形BDLK=BAGF=AB²。
同理可证,四边形CKLE=ACIH=AC²。
把这两个结果相加,AB²+AC²=BD×BK+KL×KC
由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC
由于CBDE是个正方形,因此AB²+AC²=BC²,即a²+b²=c²。
此证明是于欧几里得《几何原本》一书第1.47节所提出的。
勾股定理是一个基本几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。勾股定理是余弦定理的一个特例。勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。“勾三股四弦五”是勾股定理最基本的公式。也就是说,设直角三角形两直角边为a和b,斜边为c,那a²+b²=c²。
简单证明方法如下:
利用相似三角形性质可证明勾股定理,
如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.
在ΔADC和ΔACB中,
∵ ∠ADC = ∠ACB = 90º,
∠CAD = ∠BAC, ∴ ΔADC ∽ ΔACB.
AD∶AC = AC ∶AB, 即 AC²=AD·AB.
同理可证,ΔCDB ∽ ΔACB,从而有BC²=BD·AB
∴AC²+BC²=(AD+DB)·AB=AB²,即 a²+b²=c²
2018-08-03 · 知道合伙人人力资源行家
知道合伙人人力资源行家
向TA提问 私信TA
已知:△ABC是直角三角形,∠C=90°。
求证:AC²+BC²=AB²
证明:过点C作CD⊥AB,垂足为D,则AD、BD分别是AC、BC在斜边AB上的射影。
由射影定理可得:
AC²=AD·AB , BC²=BD·AB
∴AC²+BC²=AD·AB +BD·AB=AB·(AD+BD)=AB²