设0<X1<3,X(n+1)=√[Xn(3-Xn)] (n=1,2......) 证明{Xn}的极限存在,并求此极限
3个回答
展开全部
证明:因为0<x1<3所以x(n+1)<=[xn+(3-xn)]/2=3/2
所以{xn}有界
又x(n+1)=√[Xn(3-Xn)] >=√[Xn(3-3/2)] =√(3/2)xn>=xn
所以{xn}递增
单调有界数列必有极限,设x=limxn=limx(n+1),则
x=√x(3-x)解得x=3/2
所以limxn=3/2
用极限思想解决问题的一般步骤可概括为:
对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的’影响‘趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。
极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。
展开全部
证明:因为0<x1<3所以x(n+1)<=[xn+(3-xn)]/2=3/2
所以{xn}有界
又x(n+1)=√[Xn(3-Xn)] >=√[Xn(3-3/2)] =√(3/2)xn>=xn
所以{xn}递增单调
有界数列必有极限,设x=limxn=limx(n+1),则
x=√x(3-x)解得x=3/2
所以limxn=3/2
所以{xn}有界
又x(n+1)=√[Xn(3-Xn)] >=√[Xn(3-3/2)] =√(3/2)xn>=xn
所以{xn}递增单调
有界数列必有极限,设x=limxn=limx(n+1),则
x=√x(3-x)解得x=3/2
所以limxn=3/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:因为0<x1<3所以x(n+1)<=[xn+(3-xn)]/2=3/2
所以{xn}有界
又x(n+1)=√[Xn(3-Xn)]
>=√[Xn(3-3/2)]
=√(3/2)xn>=xn
所以{xn}递增
单调有界数列必有极限,设x=limxn=limx(n+1),则
x=√x(3-x)解得x=3/2
所以limxn=3/2
所以{xn}有界
又x(n+1)=√[Xn(3-Xn)]
>=√[Xn(3-3/2)]
=√(3/2)xn>=xn
所以{xn}递增
单调有界数列必有极限,设x=limxn=limx(n+1),则
x=√x(3-x)解得x=3/2
所以limxn=3/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |