ansys压电分析例子 30
我刚接触ansys软件,现在正处理一个压电分析的问题。请高手帮忙用ansys10.0模拟一个压电材料(电缆)施加高电压之后击穿的情形。希望能把各个步骤写得详细一点!谢谢!...
我刚接触ansys软件,现在正处理一个压电分析的问题。请高手帮忙用ansys10.0模拟一个压电材料(电缆)施加高电压之后击穿的情形。希望能把各个步骤写得详细一点!谢谢!
这是命令流的形式吧?我想要GUI菜单输入啊。能否提供一个菜单输入的详细步骤(ansys10.0)? 展开
这是命令流的形式吧?我想要GUI菜单输入啊。能否提供一个菜单输入的详细步骤(ansys10.0)? 展开
1个回答
展开全部
只能给你提供一个例子!
/title, Coriolis Effect in a Vibrating Quartz Tuning Fork
/com uMKS system of units
/nopr
pi = 4*atan(1)
/VIEW,1,1,1,1
/TRIAD,lbot
/PREP7
! == Material parameters
! -- Elastic coefficients, MPa
c11 = 86.74e3
c12 = 6.99e3
c13 = 11.91e3
c14 = 17.91e3
c33 = 107.2e3
c44 = 57.94e3
tb,ANEL,1
tbdata, 1, c11, c12, c13, 0, c14, 0
tbdata, 7, c11, c13, 0,-c14, 0
tbdata,12, c33, 0, 0, 0
tbdata,16, (c11-c12)/2, 0, c14
tbdata,19, c44, 0
tbdata,21, c44
! -- Piezoelectric coefficients, pC/um2
e11 = 0.171
e14 =-0.0406
tb,PIEZ,1
tbdata, 1, e11, 0, 0
tbdata, 4, -e11, 0, 0
tbdata, 7, 0, 0, 0
tbdata,10, 0, -e11, 0
tbdata,13, e14, 0, 0
tbdata,16, 0, -e14, 0
! -- Dielectric constants
emunit,EPZRO,8.854e-6 ! pF/um
mp,PERx,1, 4.43
mp,PERy,1, 4.43
mp,PERz,1, 4.63
! -- Density, kg/um3
mp,DENS,1,2649e-18
! == Dimensions, um
thick = 350 ! thickness of wafer
leng_TF = 4800 ! length of tuning fork
leng_tin = 3200 ! length of tines
dist_t = 350 ! distance between tines
width_t = 450 ! width of tines
x_t_in = dist_t/2 ! distance to outer part of tines
x_t_out = dist_t/2 + width_t ! distance to inner part of tines
! == FE Model
et,1,SOLID226,1001 ! piezoelectric 20-node brick
! -- Keypoints
k, 1, 0, 0 , -thick/2
k, 2, 0, leng_TF-leng_tin , -thick/2
k, 3, x_t_in, 0 , -thick/2
k, 4, x_t_in, leng_TF-leng_tin , -thick/2
k, 5, x_t_in, leng_TF , -thick/2
k, 6, x_t_out, 0 , -thick/2
k, 7, x_t_out, leng_TF-leng_tin , -thick/2
k, 8, x_t_out, leng_TF , -thick/2
! -- Areas
a,1,3,4,2
a,3,6,7,4
a,4,7,8,5
! -- Lines
lesize, 5,,, 4, ! X, tines
*repeat,3,2
lesize, 1,,, 2, ! X, between tines
lesize, 3,,, 2,
lesize, 8,,, 14, 3 ! Y, tines
lesize,10,,, 14, 1/3
lesize, 2,,, 8, -2 ! Y, base
*repeat,3,2
*get,n_lin,LINE,,count ! number of lines
lgen,2,1, n_lin, 1,,, thick,20 ! generate top layer lines
l,1,21, 4, ! thickness direction
*repeat,8,1,1
lsymm,X,all,,,100 ! generate left half of tuning fork
! -- Volumes
v, 1, 3, 4, 2, 21, 23, 24, 22
v, 3, 6, 7, 4, 23, 26, 27, 24
v, 4, 7, 8, 5, 24, 27, 28, 25
v,101,103,104,102, 121,123,124,122
v,103,106,107,104, 123,126,127,124
v,104,107,108,105, 124,127,128,125
vplot
nummrg,kp
! -- Mesh
type,1
vmesh,all
! == Define electrodes
delta=20 ! separation between electrodes and edge
! -- Loaded electrode
nsel,s,loc,x, x_t_in+delta, x_t_out-delta ! top/bottom right tine
nsel,u,loc,z, -thick/2+1, thick/2-1
nsel,a,loc,x, -x_t_out-1, -x_t_out+1 ! sides of left tine
nsel,a,loc,x, -x_t_in-1, -x_t_in+1
nsel,r,loc,y, leng_TF-leng_tin-1, leng_TF-leng_tin*0.45 ! select tine-nodes
cp,1,volt,all
n_load=ndnext(0) ! get master node on loaded electrode
! -- Ground electrode
nsel,s,loc,x, -x_t_out+delta, -x_t_in-delta ! top/bottom left tine
nsel,u,loc,z, -thick/2+1, thick/2-1
nsel,a,loc,x, x_t_out-1, x_t_out+1 ! sides of right tine
nsel,a,loc,x, x_t_in-1, x_t_in+1
nsel,r,loc,y, leng_TF-leng_tin-1, leng_TF-leng_tin*0.45 ! select tine-nodes
cp,2,volt,all
n_ground=ndnext(0) ! get master node on ground electrode
nsel,all
! == Solution
/SOLU
! -- Structural constraints
nsel,s,loc,y
d,all,ux,0,,,,uy,uz
nsel,all
! -- Ground electrode
d,n_ground,volt,0 ! ground
! -- Loaded electrode
d,n_load,volt,1 ! apply 1 Volt
! -- Add Coriolis effect
coriolis,on,,,off ! Coriolis effect in a rotating reference frame
omega,,1.e4 ! rotational velocity about the Y axis, rad/s
fini
! == Modal analysis
/SOLU
antype,modal
modopt,QRDAMP,4 ! use damped eigensolver
solve
fini
! ==Harmonic analysis
/SOLU
antype,harm
dmprat,0.02 ! specify structural damping ratio of 2%
harfrq,,32768
outres,all,all
solve
fini
/POST1
set,1,1
/dscale,1,6
plns,uz
anharm ! animate complex displacements
fini
那个没有!
/title, Coriolis Effect in a Vibrating Quartz Tuning Fork
/com uMKS system of units
/nopr
pi = 4*atan(1)
/VIEW,1,1,1,1
/TRIAD,lbot
/PREP7
! == Material parameters
! -- Elastic coefficients, MPa
c11 = 86.74e3
c12 = 6.99e3
c13 = 11.91e3
c14 = 17.91e3
c33 = 107.2e3
c44 = 57.94e3
tb,ANEL,1
tbdata, 1, c11, c12, c13, 0, c14, 0
tbdata, 7, c11, c13, 0,-c14, 0
tbdata,12, c33, 0, 0, 0
tbdata,16, (c11-c12)/2, 0, c14
tbdata,19, c44, 0
tbdata,21, c44
! -- Piezoelectric coefficients, pC/um2
e11 = 0.171
e14 =-0.0406
tb,PIEZ,1
tbdata, 1, e11, 0, 0
tbdata, 4, -e11, 0, 0
tbdata, 7, 0, 0, 0
tbdata,10, 0, -e11, 0
tbdata,13, e14, 0, 0
tbdata,16, 0, -e14, 0
! -- Dielectric constants
emunit,EPZRO,8.854e-6 ! pF/um
mp,PERx,1, 4.43
mp,PERy,1, 4.43
mp,PERz,1, 4.63
! -- Density, kg/um3
mp,DENS,1,2649e-18
! == Dimensions, um
thick = 350 ! thickness of wafer
leng_TF = 4800 ! length of tuning fork
leng_tin = 3200 ! length of tines
dist_t = 350 ! distance between tines
width_t = 450 ! width of tines
x_t_in = dist_t/2 ! distance to outer part of tines
x_t_out = dist_t/2 + width_t ! distance to inner part of tines
! == FE Model
et,1,SOLID226,1001 ! piezoelectric 20-node brick
! -- Keypoints
k, 1, 0, 0 , -thick/2
k, 2, 0, leng_TF-leng_tin , -thick/2
k, 3, x_t_in, 0 , -thick/2
k, 4, x_t_in, leng_TF-leng_tin , -thick/2
k, 5, x_t_in, leng_TF , -thick/2
k, 6, x_t_out, 0 , -thick/2
k, 7, x_t_out, leng_TF-leng_tin , -thick/2
k, 8, x_t_out, leng_TF , -thick/2
! -- Areas
a,1,3,4,2
a,3,6,7,4
a,4,7,8,5
! -- Lines
lesize, 5,,, 4, ! X, tines
*repeat,3,2
lesize, 1,,, 2, ! X, between tines
lesize, 3,,, 2,
lesize, 8,,, 14, 3 ! Y, tines
lesize,10,,, 14, 1/3
lesize, 2,,, 8, -2 ! Y, base
*repeat,3,2
*get,n_lin,LINE,,count ! number of lines
lgen,2,1, n_lin, 1,,, thick,20 ! generate top layer lines
l,1,21, 4, ! thickness direction
*repeat,8,1,1
lsymm,X,all,,,100 ! generate left half of tuning fork
! -- Volumes
v, 1, 3, 4, 2, 21, 23, 24, 22
v, 3, 6, 7, 4, 23, 26, 27, 24
v, 4, 7, 8, 5, 24, 27, 28, 25
v,101,103,104,102, 121,123,124,122
v,103,106,107,104, 123,126,127,124
v,104,107,108,105, 124,127,128,125
vplot
nummrg,kp
! -- Mesh
type,1
vmesh,all
! == Define electrodes
delta=20 ! separation between electrodes and edge
! -- Loaded electrode
nsel,s,loc,x, x_t_in+delta, x_t_out-delta ! top/bottom right tine
nsel,u,loc,z, -thick/2+1, thick/2-1
nsel,a,loc,x, -x_t_out-1, -x_t_out+1 ! sides of left tine
nsel,a,loc,x, -x_t_in-1, -x_t_in+1
nsel,r,loc,y, leng_TF-leng_tin-1, leng_TF-leng_tin*0.45 ! select tine-nodes
cp,1,volt,all
n_load=ndnext(0) ! get master node on loaded electrode
! -- Ground electrode
nsel,s,loc,x, -x_t_out+delta, -x_t_in-delta ! top/bottom left tine
nsel,u,loc,z, -thick/2+1, thick/2-1
nsel,a,loc,x, x_t_out-1, x_t_out+1 ! sides of right tine
nsel,a,loc,x, x_t_in-1, x_t_in+1
nsel,r,loc,y, leng_TF-leng_tin-1, leng_TF-leng_tin*0.45 ! select tine-nodes
cp,2,volt,all
n_ground=ndnext(0) ! get master node on ground electrode
nsel,all
! == Solution
/SOLU
! -- Structural constraints
nsel,s,loc,y
d,all,ux,0,,,,uy,uz
nsel,all
! -- Ground electrode
d,n_ground,volt,0 ! ground
! -- Loaded electrode
d,n_load,volt,1 ! apply 1 Volt
! -- Add Coriolis effect
coriolis,on,,,off ! Coriolis effect in a rotating reference frame
omega,,1.e4 ! rotational velocity about the Y axis, rad/s
fini
! == Modal analysis
/SOLU
antype,modal
modopt,QRDAMP,4 ! use damped eigensolver
solve
fini
! ==Harmonic analysis
/SOLU
antype,harm
dmprat,0.02 ! specify structural damping ratio of 2%
harfrq,,32768
outres,all,all
solve
fini
/POST1
set,1,1
/dscale,1,6
plns,uz
anharm ! animate complex displacements
fini
那个没有!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询