这是一道小学几何题。题中给出一个边长为20的正方形,正方形里有一个扇形和一个半

 我来答
狐璃不是狐狸4
2016-04-02 · 超过19用户采纳过TA的回答
知道答主
回答量:53
采纳率:0%
帮助的人:30.3万
展开全部

你说的题目是这个吧,正方形边长20,一个半圆,一个扇形求图中A的面积。                              据我的计算,结果是114.16,请切磋

ku66rt
2018-06-13
知道答主
回答量:4
采纳率:0%
帮助的人:3259
引用lhb0508401014的回答:

你说的题目是这个吧,正方形边长20,一个半圆,一个扇形求图中A的面积。 据我的计算,结果是114.16,请切磋
展开全部
应该是96.174
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
华视——黄冠凯
2018-02-01
知道答主
回答量:1
采纳率:0%
帮助的人:897
展开全部

如图所示,所求面积S=扇形ABO-三角形ABO+扇形EBO-三角形EBO,

又由于EB=EO,AB=AO(都是扇形所在圆的半径),AE是共边,根据相同三角形定理,三边相等,两三角形相同,即:三角形AOE=三角形ABE,所以角OAE=角BAE,

角OAB=2*角BAE,而tan角BAE=EB/AB,即 角OAB=2*arc tan EB/AB,

同理可得,角OEB=2*arc tan AB/EB,

扇形ABO的面积=(2*arc tan EB/AB)/360*π*AB*AB,

扇形EBO的面积=(2*arc tan AB/EB)/360*π*BE*BE,

三角形ABO+三角形EBO的面积可看成两个三角形ABE的面积=2*AB*BE/2=AB*BE,

所求面积=(2*arc tan EB/AB)/360*π*AB*AB+(2*arc tan AB/EB)/360*π*BE*BE-AB*BE=(2*arc tan0.5) /360*π*400+(2*arc tan2) /360*π*100-200,

需要具体数值的话,可查三角函数表,进行替换算出。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
大号被放逐了
2017-12-11
知道答主
回答量:1
采纳率:0%
帮助的人:915
展开全部
向左转,向右转
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2012-06-17
展开全部
急急急
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 5条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式