y=cosx的单调减区间[2kπ,2kπ+π],k属于Z。
余弦函数的定义域是整个实数集,值域是(-1,1)。它是周期函数,其最小正周期为2π。在自变量为2kπ,k为整数)时,该函数有极大值1;在自变量为时(2k+1)π,该函数有极小值-1。余弦函数是偶函数,其图像关于y轴对称。
单调区间是指一个函数中所有递减或递增性质的区间。在区间上单调是指某一个区间的单调性。
扩展资料:
余弦函数的作用
在直角三角形中,将大小为(单位为弧度)的角邻边长度比斜边长度的比值求出,函数值为上述比的比值,也是sec(θ)的倒数。
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1>x2时都有f(x1)>f(x2).那么就是f(x)在这个区间上是减函数.
如果函数y=f(x)在某个区间是增函数或减函数。那么就说函说y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y= f(x)的单调区间,在单调区间上增函数的图象是上升的,减函数的图象是下降的。
在[2kπ ,2kπ+π]上是单调递减。
在[2kπ+π,2kπ+2π]是单调递增。
余弦函数性质:
周期性:最小正周期都是2π;
奇偶性:偶函数;
对称性:对称中心是(Kπ+π/2,0),K∈Z;对称轴是直线x=Kπ,K∈Z;
单调性:在[2Kπ,2Kπ+π],K∈Z上单调递减;在[2Kπ+π,2Kπ+2π],K∈Z上单调递增。
扩展资料:
其他三角函数:
1、正弦函数
主词条:正弦函数。
格式:sin(θ)。
作用:在直角三角形中,将大小为θ(单位为弧度)的角对边长度比斜边长度的比值求出,函数值为上述比的比值,也是csc(θ)的倒数。
函数图像:波形曲线。
值域:-1~1。
2、余弦函数
主词条:余弦函数。
格式:cos(θ)。
作用:在直角三角形中,将大小为(单位为弧度)的角邻边长度比斜边长度的比值求出,函数值为上述比的比值,也是sec(θ)的倒数。
函数图像:波形曲线。
值域:-1~1。
3、正切函数
主词条:正切函数。
格式:tan(θ)。
作用:在直角三角形中,将大小为θ(单位为弧度)的角对边长度比邻边长度的比值求出,函数值为上述比的比值,也是cot(θ)的倒数。
值域:-∞~∞。
在[2kπ+π,2kπ+2π]是单调递增