1个回答
展开全部
1.黑板上写有1,2,3,…,1997,1998这1998个自然数,对它们进行操作,每次操作规则如下:擦掉写在黑板上的三个数后,再添写上所擦掉三个数之和的个位数字,例如:擦掉5,13和1998后,添加上6;若再擦掉6,6,38,添上0,等等。如果经过998次操作后,发现黑板上剩下两个数,一个是25,求另一个数.
答案
实质是求和问题。最终黑板上所剩的数之和为1到1998的各个个位数之和。
1.只看个位数:首先计算1到1989前的个位数之和:
1+2+3+4+5+6+7+8+9+1+2+……
(1,11,21,31,41,51,61,71,81,91,111,121,
131,141,151,161,171,181,……1981)这里共有
198个“1+2+3+4+5+6+7+8+9”,得数是50*1989=99450
2.再计算1990到1998的个位数之和:1+2+3+……+8=50-9=41
所以1到1998的个位数之和为99450+41=99491
3.黑板上所剩的两个数都是总和的因数,所以
另一个数=99491-25=99456
已知关于x的方程2a(x-1)=(5-a)x+3b有无数多个解,那么a=_____,b=_____.
答:2a(x-1)=(5-a)x+3b
2ax-2a=5x-ax+3b
3ax-5x=2a+3b
x(3a-5)=2a+3b
关于x的方程2a(x-1)=(5-a)x+3b有无数多个解
所以无论X取何值,总成立
所以此方程与X无关
所以 3a-5=0 , 2a+3b=0
a=5/3 , b= -10/9
2.由自然数1~9组成的一切可能的没有重复数字的四位数,这些四位数之和是多少?
答:首先看看一共有多少个四位数。
千位有9种可能,百位有8种,十位有7种,个位有6种。
一共有3024个四位数。
先看个位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的个位是1,有336个数的个位是2,有336个数的个位是3,……有336个数的个位是9。
这些所有的个位相加就是336×(1+2+...+9)×1。
再看十位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的十位是1,有336个数的十位是2,有336个数的十位是3,……有336个数的十位是9。
这些所有的个位相加就是336×(1+2+...+9)×10。
再看百位。由上面分析可知,所有的百位相加就是336×(1+2+...+9)×100。
再看千位。由上面分析可知,所有的千位相加就是336×(1+2+...+9)×1000。
所以所有的四位数之和,就是:
336×(1+2+...+9)×1+336×(1+2+...+9)×10+336×(1+2+...+9)×100+336×(1+2+...+9)×1000
=336×(1+2+...+9)×(1+10+100+1000)
=336×45×1111
=16798320
给你个奥数网站:
http://www.aoshu.cn/Article_L/Class110List.htm
参考资料:http://www.aoshu.cn/Article_L/Class110List.htm
答案
实质是求和问题。最终黑板上所剩的数之和为1到1998的各个个位数之和。
1.只看个位数:首先计算1到1989前的个位数之和:
1+2+3+4+5+6+7+8+9+1+2+……
(1,11,21,31,41,51,61,71,81,91,111,121,
131,141,151,161,171,181,……1981)这里共有
198个“1+2+3+4+5+6+7+8+9”,得数是50*1989=99450
2.再计算1990到1998的个位数之和:1+2+3+……+8=50-9=41
所以1到1998的个位数之和为99450+41=99491
3.黑板上所剩的两个数都是总和的因数,所以
另一个数=99491-25=99456
已知关于x的方程2a(x-1)=(5-a)x+3b有无数多个解,那么a=_____,b=_____.
答:2a(x-1)=(5-a)x+3b
2ax-2a=5x-ax+3b
3ax-5x=2a+3b
x(3a-5)=2a+3b
关于x的方程2a(x-1)=(5-a)x+3b有无数多个解
所以无论X取何值,总成立
所以此方程与X无关
所以 3a-5=0 , 2a+3b=0
a=5/3 , b= -10/9
2.由自然数1~9组成的一切可能的没有重复数字的四位数,这些四位数之和是多少?
答:首先看看一共有多少个四位数。
千位有9种可能,百位有8种,十位有7种,个位有6种。
一共有3024个四位数。
先看个位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的个位是1,有336个数的个位是2,有336个数的个位是3,……有336个数的个位是9。
这些所有的个位相加就是336×(1+2+...+9)×1。
再看十位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的十位是1,有336个数的十位是2,有336个数的十位是3,……有336个数的十位是9。
这些所有的个位相加就是336×(1+2+...+9)×10。
再看百位。由上面分析可知,所有的百位相加就是336×(1+2+...+9)×100。
再看千位。由上面分析可知,所有的千位相加就是336×(1+2+...+9)×1000。
所以所有的四位数之和,就是:
336×(1+2+...+9)×1+336×(1+2+...+9)×10+336×(1+2+...+9)×100+336×(1+2+...+9)×1000
=336×(1+2+...+9)×(1+10+100+1000)
=336×45×1111
=16798320
给你个奥数网站:
http://www.aoshu.cn/Article_L/Class110List.htm
参考资料:http://www.aoshu.cn/Article_L/Class110List.htm
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |