解比例的依据是什么
4个回答
展开全部
解比例的依据是比例的基本性质:两外项的积等于两内项的积。
如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。求比例中的未知项。
比例的基本性质:
①表示两个比相等的式子叫做比例,如3:4=9:12、7:9=21:27
在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项。比例的四个数均不能为0。
比例有四个项,分别是两个内项和两个外项;在7:9=21:27中,其中7与27叫做比例的外项,9与21叫做比例的内项。
比例有四个项,分别是两个内项和两个外项。
②比,�如:教师和学生的~已经达到要求。
③比重,如:在所销商品中,国货的~比较大。
④比例写成分数的形式后,那么,左边的分母和右边的分子是内项
左边的分子和右边的分母是外项。
⑤在一个比例中,两个外项的积等于两个内项的积,这叫做比例的基本性质。
⑥正比例与反比例的相同点与不同点
相同点 不同点 关系式
正比例 两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的比值一定,两种量就叫做正比例的量,他们的关系叫做正比例的关系。如果用字母x、y表示两种关联的量,用k表示它们的比值正比例关系可以用下面式子表示:y÷x=k(一定)
反比例 两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的积一定,这两种量就叫做反比例的量他们的关系叫做反比例关系。如果用字母x、y表示两种关联的量,用k表示它们的乘积反比例关系可以用下面式子表示:x×y=k(一定)
比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构。
比例分为比例尺和比例. 表示两个比相等的式子叫做比例。判断两个比能不能组成比例,要看它们的比值是不是相等。组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。在比例里,两个外项的积等于两个内项的积。求比例的未知项,叫做解比例。 比如:x:3= 9:27
解法:
x:3=9:27
解:27x=3×9
27x=27
x=1
⑥这有两道数学题,试着做做看吧!
125% :7=4 :x
解: 125%x=4×7
1.25x =28
x =28÷1.25
x =22.5
13.5 :6=x :4
解:6x=13.5×4
6x=54
x=54÷6
x=9
⑦比例具有如下性质:
若a:b=c:d(b.d≠0),则有
1) ad=bc
2) b:a=d:c (a.c≠0)
3) a:c=b:d ; c:a=d:b
4) (a+b):b=(c+d):d
5) a:(a+b)=c:(c+d) ( a+b≠0,c+d≠0)
6) (a-b):(a+b)=(c-d):(c+d) ( a+b≠0,c+d≠0)
证明过程如下
令 a:b=c:d=k,
∵a:b=c:d
∴a=bk;c=dk
1)∴ad=bk*d=kbd;bc=b*dk=kbd
∴ad=bc
2) 显然b:a=d:c=1/k
3) a:c=bk:dk=b:d ;结合性质2有c:a=d:b
4) ∵a:b=c:d
∴(a/b)+1=(c/d)+1
∴(a+b)/b=(c+d)/d=1+k ;即 (a+b):b=(c+d):d
a+b≠0,c+d≠0时,结合性质2有b:(a+b)=d:(c+d)
且b/(a+b)=d/(c+d)=1/(k+1) ……①
5) ∵b/(a+b)=d/(c+d)
∴1- b/(a+b)=1- d/(c+d)=1-1/(k+1)
∴a/(a+b)=c/(c+d)=k/k+1 ……② 即a:(a+b)=c:(c+d)
a+b≠0,c+d≠0时,结合性质2有 (a+b):a=(c+d):c
6) ②-①,等式两边同时相减得 (a-b)/(a+b)=(c-d)/(c+d) =(k-1)/(k+1)
7) 做做此题:一个长方形,比例为2:3,长方形的面积是36平方厘米,求它的长和宽。
(有意者,请做在后面。)
假设长方形宽为2,长为3,那么:
宽:2x2=4 长: 3x3=9
答:长方形的长是9,宽是4。
将36分解质因数,发现有2和3的倍数,利用它们,得到结果。
如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。求比例中的未知项。
比例的基本性质:
①表示两个比相等的式子叫做比例,如3:4=9:12、7:9=21:27
在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项。比例的四个数均不能为0。
比例有四个项,分别是两个内项和两个外项;在7:9=21:27中,其中7与27叫做比例的外项,9与21叫做比例的内项。
比例有四个项,分别是两个内项和两个外项。
②比,�如:教师和学生的~已经达到要求。
③比重,如:在所销商品中,国货的~比较大。
④比例写成分数的形式后,那么,左边的分母和右边的分子是内项
左边的分子和右边的分母是外项。
⑤在一个比例中,两个外项的积等于两个内项的积,这叫做比例的基本性质。
⑥正比例与反比例的相同点与不同点
相同点 不同点 关系式
正比例 两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的比值一定,两种量就叫做正比例的量,他们的关系叫做正比例的关系。如果用字母x、y表示两种关联的量,用k表示它们的比值正比例关系可以用下面式子表示:y÷x=k(一定)
反比例 两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的积一定,这两种量就叫做反比例的量他们的关系叫做反比例关系。如果用字母x、y表示两种关联的量,用k表示它们的乘积反比例关系可以用下面式子表示:x×y=k(一定)
比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构。
比例分为比例尺和比例. 表示两个比相等的式子叫做比例。判断两个比能不能组成比例,要看它们的比值是不是相等。组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。在比例里,两个外项的积等于两个内项的积。求比例的未知项,叫做解比例。 比如:x:3= 9:27
解法:
x:3=9:27
解:27x=3×9
27x=27
x=1
⑥这有两道数学题,试着做做看吧!
125% :7=4 :x
解: 125%x=4×7
1.25x =28
x =28÷1.25
x =22.5
13.5 :6=x :4
解:6x=13.5×4
6x=54
x=54÷6
x=9
⑦比例具有如下性质:
若a:b=c:d(b.d≠0),则有
1) ad=bc
2) b:a=d:c (a.c≠0)
3) a:c=b:d ; c:a=d:b
4) (a+b):b=(c+d):d
5) a:(a+b)=c:(c+d) ( a+b≠0,c+d≠0)
6) (a-b):(a+b)=(c-d):(c+d) ( a+b≠0,c+d≠0)
证明过程如下
令 a:b=c:d=k,
∵a:b=c:d
∴a=bk;c=dk
1)∴ad=bk*d=kbd;bc=b*dk=kbd
∴ad=bc
2) 显然b:a=d:c=1/k
3) a:c=bk:dk=b:d ;结合性质2有c:a=d:b
4) ∵a:b=c:d
∴(a/b)+1=(c/d)+1
∴(a+b)/b=(c+d)/d=1+k ;即 (a+b):b=(c+d):d
a+b≠0,c+d≠0时,结合性质2有b:(a+b)=d:(c+d)
且b/(a+b)=d/(c+d)=1/(k+1) ……①
5) ∵b/(a+b)=d/(c+d)
∴1- b/(a+b)=1- d/(c+d)=1-1/(k+1)
∴a/(a+b)=c/(c+d)=k/k+1 ……② 即a:(a+b)=c:(c+d)
a+b≠0,c+d≠0时,结合性质2有 (a+b):a=(c+d):c
6) ②-①,等式两边同时相减得 (a-b)/(a+b)=(c-d)/(c+d) =(k-1)/(k+1)
7) 做做此题:一个长方形,比例为2:3,长方形的面积是36平方厘米,求它的长和宽。
(有意者,请做在后面。)
假设长方形宽为2,长为3,那么:
宽:2x2=4 长: 3x3=9
答:长方形的长是9,宽是4。
将36分解质因数,发现有2和3的倍数,利用它们,得到结果。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解比例的依据是比例的基本性质:两外项的积等于两内项的积。
如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。求比例中的未知项。
比例的基本性质:
①表示两个比相等的式子叫做比例,如3:4=9:12、7:9=21:27
在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项。比例的四个数均不能为0。
比例有四个项,分别是两个内项和两个外项;在7:9=21:27中,其中7与27叫做比例的外项,9与21叫做比例的内项。
比例有四个项,分别是两个内项和两个外项。
②比,如:教师和学生的~已经达到要求。
③比重,如:在所销商品中,国货的~比较大。
④比例写成分数的形式后,那么,左边的分母和右边的分子是内项
左边的分子和右边的分母是外项。
⑤在一个比例中,两个外项的积等于两个内项的积,这叫做比例的基本性质。
⑥正比例与反比例的相同点与不同点
相同点 不同点 关系式
正比例 两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的比值一定,两种量就叫做正比例的量,他们的关系叫做正比例的关系。如果用字母x、y表示两种关联的量,用k表示它们的比值正比例关系可以用下面式子表示:y÷x=k(一定)
反比例 两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的积一定,这两种量就叫做反比例的量他们的关系叫做反比例关系。如果用字母x、y表示两种关联的量,用k表示它们的乘积反比例关系可以用下面式子表示:x×y=k(一定)
比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构。
比例分为比例尺和比例. 表示两个比相等的式子叫做比例。判断两个比能不能组成比例,要看它们的比值是不是相等。组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。在比例里,两个外项的积等于两个内项的积。求比例的未知项,叫做解比例。 比如:x:3= 9:27
解法:
x:3=9:27
解:27x=3×9
27x=27
x=1
⑥这有两道数学题,试着做做看吧!
125% :7=4 :x
解: 125%x=4×7
1.25x =28
x =28÷1.25
x =22.5
13.5 :6=x :4
解:6x=13.5×4
6x=54
x=54÷6
x=9
两内项之积等于两外项之积,希望您能满意!谢谢!
如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。求比例中的未知项。
比例的基本性质:
①表示两个比相等的式子叫做比例,如3:4=9:12、7:9=21:27
在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项。比例的四个数均不能为0。
比例有四个项,分别是两个内项和两个外项;在7:9=21:27中,其中7与27叫做比例的外项,9与21叫做比例的内项。
比例有四个项,分别是两个内项和两个外项。
②比,如:教师和学生的~已经达到要求。
③比重,如:在所销商品中,国货的~比较大。
④比例写成分数的形式后,那么,左边的分母和右边的分子是内项
左边的分子和右边的分母是外项。
⑤在一个比例中,两个外项的积等于两个内项的积,这叫做比例的基本性质。
⑥正比例与反比例的相同点与不同点
相同点 不同点 关系式
正比例 两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的比值一定,两种量就叫做正比例的量,他们的关系叫做正比例的关系。如果用字母x、y表示两种关联的量,用k表示它们的比值正比例关系可以用下面式子表示:y÷x=k(一定)
反比例 两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的积一定,这两种量就叫做反比例的量他们的关系叫做反比例关系。如果用字母x、y表示两种关联的量,用k表示它们的乘积反比例关系可以用下面式子表示:x×y=k(一定)
比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构。
比例分为比例尺和比例. 表示两个比相等的式子叫做比例。判断两个比能不能组成比例,要看它们的比值是不是相等。组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。在比例里,两个外项的积等于两个内项的积。求比例的未知项,叫做解比例。 比如:x:3= 9:27
解法:
x:3=9:27
解:27x=3×9
27x=27
x=1
⑥这有两道数学题,试着做做看吧!
125% :7=4 :x
解: 125%x=4×7
1.25x =28
x =28÷1.25
x =22.5
13.5 :6=x :4
解:6x=13.5×4
6x=54
x=54÷6
x=9
两内项之积等于两外项之积,希望您能满意!谢谢!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2010-05-07
展开全部
两个外项的积等于两个内项的积。(比例的基本性质)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
两内项之积等于两外项之积,希望您能满意!谢谢!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |