如何证明威尔逊定理

定理19
2010-04-24 · TA获得超过1350个赞
知道小有建树答主
回答量:302
采纳率:0%
帮助的人:332万
展开全部
若p为质数,则p可整除(p-1)!+1。

证明如下
p=2,命题显然成立;
p=3,命题显然成立;
对于奇质数p>=5,令a∈A={2,3,4.....p-2},则B={a,2a,3a,.....,(p-1)a}中不会有对于除数p同余的两个数;事实上αa,βa∈B,αa≡βa(mod p),则a|α-β|能被p整除,而a|α-β|∈B,B中的元素不可能被p除尽。于是烂戚B中被p除得的余数形成集合{1,2,3,...,p-1}.
假设B中被p除余一的数是γa:
一若γ=1,则γa=a,它被p除余a,所以γ=1不成立;
二若γ=p-1,则γa=(p-1)a,它被p除余p-a,所以γ=p-1不成立;
三若γ=a,则γa=a*a,由于a*a≡1(mod p),故应有a*a-1=(a+1)(a-1)≡0(mod p),这只能是a=1或a=p-1,此与a∈A矛盾,故不成立;
有一二三知γ≠a且a,γ∈A。
a不同时,γ也相异;若a1≠a2, a1,a2∈A,且γa1≡γa2≡1(mod p),因,γa1,γa2∈B,而B中的元素关于mod p不橘历伍同余,可见a1≠a2,则γ1≠γ2。
即A中的每一个a均可找到与其配对的y,γ∈A使ay≡1(mod p),
又,a不同时,γ也相异。
因此,A中的偶数个(p-3个)元素可以分成(p-3)/2个二元组(a,y),每个二元圆或组都满足ay≡1(mod p),
∴ 1×2×3×4....(p-2)≡1(mod p)
p-1≡-1(mod p)
∴ (p-1)!≡-1(mod p)
从而p可整除(p-1)!+1

参考资料: 百度百科

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式