在平行四边形ABCD中,∠DAB=60°,点E,F分别在CD.AB的延长线上,且AE=AD,CF=CB

(1)求证:四边形AFCE是平行四边形(2)若去掉已知条件∠DAB=60°,上述结论还成立吗?若成立,请写出证明过程,若不成立,请说明理由。... (1)求证:四边形AFCE是平行四边形
(2)若去掉已知条件∠DAB=60°,上述结论还成立吗?若成立,请写出证明过程,若不成立,请说明理由。
展开
真冰凉3
推荐于2017-09-18 · TA获得超过1091个赞
知道小有建树答主
回答量:318
采纳率:0%
帮助的人:247万
展开全部
(1)∵ABCD是平行四边形∴AB=CD,AD=CB,而AE=AD,CF=CB,∴AE=CF=AD=CB
∵ABCD是平行四边形∴AD‖CB,而∠DAB=60°,∴∠CBF=60°又∵CB=CF,
∴△BCF是等边三角形,∴BF=CB同理DE=AD而AD=BC,∴BF=DE
而AF=AB+BF,CE=CD+DE,AB=CD,∴AF=CE
∵AF=CE,AE=CF∴四边形AFCE是平行四边形。
(2)成立。
∵ABCD是平行四边形∴AB=CD,AD=CB,而AE=AD,CF=CB,∴AE=CF=AD=CB
∵AE=AD∴∠ADE=∠DEA同理∠CBF=∠CFB,∵CD‖AB,∴∠EDA=∠DAB
∴∠ADE、∠DEA、∠CBF、∠CFB这四个角都相等,于是∠AED=∠BFC,可以设FA延长线上一点为G,那么CD‖AB,∠DEA=∠EAG=∠BFC,∴EA‖CF而AE=CF
这样可以得出四边形AFCE是平行四边形。
海天逸
2010-04-25 · TA获得超过434个赞
知道答主
回答量:63
采纳率:0%
帮助的人:0
展开全部
1.易得三角形DA CBFE为等边三角形
ED=BF
EC=AB
又因AB平行CD
所以为平行四边形
2.∠E=∠ADE
∠F=∠CBF
三角形ADE全等于三角形 CBF
ED=BF
EC=AB
又因AB平行CD
所以为平行四边形
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式