如图,已知△ABC是等边三角形,延长BC到D,在延长BA到E,使AE=BD,求证 CE=DE
证明:延长CD到F,使DF=BC,连结EF∵AE=BD∴AE=CF∵△ABC为正△∴BE=BF,∠B=60°∴△EBF为等边三角形∴∠F=60°,EF=EB在△EBC和△...
证明:延长CD到F,使DF=BC,连结EF
∵AE=BD
∴AE=CF
∵△ABC为正△
∴BE=BF,∠B=60°
∴△EBF为等边三角形
∴∠F=60°,EF=EB
在△EBC和△EFD中
EB=EF,∠B=∠F,BC=DF
∴△EBC≌△EFD(SAS)
∴EC=ED
第二种方法 展开
∵AE=BD
∴AE=CF
∵△ABC为正△
∴BE=BF,∠B=60°
∴△EBF为等边三角形
∴∠F=60°,EF=EB
在△EBC和△EFD中
EB=EF,∠B=∠F,BC=DF
∴△EBC≌△EFD(SAS)
∴EC=ED
第二种方法 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询