梯形ABcD中,AD∥Bc,<ABc=2<BcD=2a,点E在AD上,点F在Dc上,且<BEF=<
梯形ABcD中,AD∥Bc,<ABc=2<BcD=2a,点E在AD上,点F在Dc上,且<BEF=<A求:AB=AD时猜想线段EB,EF的数量关系,并证明。...
梯形ABcD中,AD∥Bc,<ABc=2<BcD=2a,点E在AD上,点F在Dc上,且<BEF=<A求:AB=AD时猜想线段EB,EF的数量关系,并证明。
展开
1个回答
展开全部
(1)解:∵梯形ABCD中,AD∥BC,
∴∠A+∠ABC=180°,
∴∠A=180°-∠ABC=180°-2α,
又∵∠BEF=∠A,
∴∠BEF=∠A=180°-2α;
故答案为:180°-2α;
(2)EB=EF.
证明:连接BD交EF于点O,连接BF.
∵AD∥BC,
∴∠A=180°-∠ABC=180°-2α,∠ADC=180°-∠C=180°-α.
∵AB=AD,
∴∠ADB=1/2(180°-∠A)=α,
∴∠BDC=∠ADC-∠ADB=180°-2α,
由(1)得:∠BEF=180°-2α=∠BDC,
又∵∠EOB=∠DOF,
∴△EOB∽△DOF,
∴∠EOD=∠BOF,
即∠EOB=∠DOF,
∵∠EOD=∠BOF,
∴△EOD∽△BOF,
∴∠EFB=∠EDO=α,
∴∠EBF=180°-∠BEF-∠EFB=α=∠EFB,
∴EB=EF;
如果你认可我的回答,请及时点击采纳为【满意回答】按钮
手机提问者在客户端右上角评价点“满意”即可。
你的采纳是我前进的动力! 如还有新的问题,请另外向我求助,答题不易,谢谢支持……
∴∠A+∠ABC=180°,
∴∠A=180°-∠ABC=180°-2α,
又∵∠BEF=∠A,
∴∠BEF=∠A=180°-2α;
故答案为:180°-2α;
(2)EB=EF.
证明:连接BD交EF于点O,连接BF.
∵AD∥BC,
∴∠A=180°-∠ABC=180°-2α,∠ADC=180°-∠C=180°-α.
∵AB=AD,
∴∠ADB=1/2(180°-∠A)=α,
∴∠BDC=∠ADC-∠ADB=180°-2α,
由(1)得:∠BEF=180°-2α=∠BDC,
又∵∠EOB=∠DOF,
∴△EOB∽△DOF,
∴∠EOD=∠BOF,
即∠EOB=∠DOF,
∵∠EOD=∠BOF,
∴△EOD∽△BOF,
∴∠EFB=∠EDO=α,
∴∠EBF=180°-∠BEF-∠EFB=α=∠EFB,
∴EB=EF;
如果你认可我的回答,请及时点击采纳为【满意回答】按钮
手机提问者在客户端右上角评价点“满意”即可。
你的采纳是我前进的动力! 如还有新的问题,请另外向我求助,答题不易,谢谢支持……
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询