如图,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线对
称轴l与x轴相交于点M。(1)求抛物线的解析式和对称轴;(2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形四条边的长度为四个连续的正整数,请你直接写...
称轴l与x轴相交于点M。
(1)求抛物线的解析式和对称轴;
(2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出点P的坐标;
(3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请你说明理由。
第三问,我看不懂,能说的详细点吗?(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大,
设N点的横坐标为t,此时点N(t,)(0<t<5),
过点N作NG∥y轴交AC于G;
由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣x+4;
把x=t代入得:y=﹣x+4,则G(t,﹣t+4),
此时:NG=﹣,
∴,
∴当t=时,△CAN面积的最大值为,
由t=,得:,
∴N(,﹣3)。 展开
(1)求抛物线的解析式和对称轴;
(2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出点P的坐标;
(3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请你说明理由。
第三问,我看不懂,能说的详细点吗?(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大,
设N点的横坐标为t,此时点N(t,)(0<t<5),
过点N作NG∥y轴交AC于G;
由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣x+4;
把x=t代入得:y=﹣x+4,则G(t,﹣t+4),
此时:NG=﹣,
∴,
∴当t=时,△CAN面积的最大值为,
由t=,得:,
∴N(,﹣3)。 展开
1个回答
展开全部
解
(1)设抛物线的解析为y=a(x-1)(x-5),把A(0,4)代入,解得a=4/5,抛物线的解析式为
y=4(x-1)(x-5)/5=4(x-3)^2/5-16/5,抛物线的对称轴x=3。
(2)点P的坐标(6,4)。
(3)直线AC的解析式求得为y=-4x/5+4,过N点作NE垂直X轴于D,交AC于E点。设N[x,4(x-3)^2/5-16/5],则E(x,-4x/5+4),所以EN=-4x/5+4-[4(x-3)^2/5-16/5]=-4x^2/5+20x/5,△NAC的面积S=0.5*5*(-4x^2/5+20x/5)=-2x^2+10x=-2(x-5/2)^2+25/2,所以当x=5/2,4(x-3)^2/5-16/5=-3,即N的坐标为(5/2,-3)时,△NAC的面积最大为25/2。
(1)设抛物线的解析为y=a(x-1)(x-5),把A(0,4)代入,解得a=4/5,抛物线的解析式为
y=4(x-1)(x-5)/5=4(x-3)^2/5-16/5,抛物线的对称轴x=3。
(2)点P的坐标(6,4)。
(3)直线AC的解析式求得为y=-4x/5+4,过N点作NE垂直X轴于D,交AC于E点。设N[x,4(x-3)^2/5-16/5],则E(x,-4x/5+4),所以EN=-4x/5+4-[4(x-3)^2/5-16/5]=-4x^2/5+20x/5,△NAC的面积S=0.5*5*(-4x^2/5+20x/5)=-2x^2+10x=-2(x-5/2)^2+25/2,所以当x=5/2,4(x-3)^2/5-16/5=-3,即N的坐标为(5/2,-3)时,△NAC的面积最大为25/2。
更多追问追答
追问
你能说下原因吗?(3)直线AC的解析式求得为y=-4x/5+4,过N点作NE垂直X轴于D,交AC于E点。设N[x,4(x-3)^2/5-16/5],则E(x,-4x/5+4),所以EN=-4x/5+4-[4(x-3)^2/5-16/5]=-4x^2/5+20x/5,△NAC的面积S=0.5*5*(-4x^2/5+20x/5)=-2x^2+10x=-2(x-5/2)^2+25/2,所以当x=5/2,4(x-3)^2/5-16/5=-3,即N的坐标为(5/2,-3)时,△NAC的面积最大为25/2。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询