微积分是什么?

 我来答
内蒙古恒学教育
2022-11-08 · 专注于教育培训升学规划
内蒙古恒学教育
向TA提问
展开全部
微积分是什么?微积分的含义:
微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
哎呦互动
2024-07-12 广告
简单讲, 微积分 包括 微分 和 积分,微分和积分的运算正好相反,二者互为逆运算。 积分 又包括 定积分 和 不定积分 定积分 是指有固定的积分区间,它的积分值是 确定的 。 不定积分 没有固定的积分区间,它的积分值是 不确定的 。 祝进步... 点击进入详情页
本回答由哎呦互动提供
骚年的奇幻世界
高粉答主

2019-11-19 · 说的都是干货,快来关注
知道答主
回答量:11.4万
采纳率:3%
帮助的人:5638万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
院肖争a
2019-11-13 · TA获得超过2752个赞
知道答主
回答量:2516
采纳率:0%
帮助的人:149万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
热情发言
高能答主

2020-04-25 · 日落是免费的,春夏秋冬也是。
热情发言
采纳数:497 获赞数:634342

向TA提问 私信TA
展开全部

微积分是数学概念,高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。

积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,定积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。

扩展资料:

微积分体系建立几百年以来,在方法应用上取得了巨大的成就,然而现行微积分原理却存在诸多不完善、不正确的地方。这不仅在于:

1、现行微积分原理在结构上不能自圆其说;

2、细微之问题甚多;

3、这个微积分原理逻辑错误也多。而且,还在于这个微积分原理几乎没有起到原理的作用。因而,纠正现行微积分原理的错误,建立新的数-形模型,重建满足数学发展要求的新微积分原理,是数学发展不可跨越的一步。

恩格斯指出:“在一切理论进步中,同17世纪下半叶发明微积分比较起来,未必再有别的东西会被看作人类精神如此崇高的胜利。”冯·诺依曼也指出:“微积分是现代数学取得的最高成就,对它的重要性怎样估计也是不会过分的。”

参考资料来源:百度百科-微积分 (数学概念)

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
灰色人生203
高粉答主

推荐于2019-08-25 · 每个回答都超有意思的
知道小有建树答主
回答量:26
采纳率:100%
帮助的人:7358
展开全部

微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。

极限和微积分的概念可以追溯到古代。到了十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,理论基础是不牢固的。

直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。

扩展资料:

积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,定积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。

十七世纪以来,微积分的概念和技巧不断扩展并被广泛应用来解决天文学、物理学中的各种实际问题,取得了巨大的成就。但直到十九世纪以前,在微积分的发展过程中,其数学分析的严密性问题一直没有得到解决。

参考资料:微积分-百度百科

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(17)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式