小学四年级数学复习资料
10个回答
展开全部
四年级下册数学背诵或默写知识点
知识点一
四则运算(背诵)
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。 4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
知识点二
0的运算(默写)
1、“0”不能做除数; 字母表示:a÷0错误 2、一个数加上0还得原数; 字母表示:a+0= a 3、一个数减去0还得原数; 字母表示:a-0= a 4、被减数等于减数,差是0; 字母表示:a-a = 0 4、一个数和0相乘,仍得0; 字母表示:a×0= 0 5、0除以任何非0的数,还得0; 字母表示:0÷a(a≠0)= 0
知识点三 运算定律(默写)
1、 加法交换律:a+b=b+a
2、 加法结合律:(a+b) +c=a+(b+c) 3、 乘法交换律:a×b=b×a
4、 乘法结合律:(a×b)×c=a×(b×c)
5、 乘法分配律:(a+b)×c=a×c+b×c 或 a×(b+c) =a×b+a×c
拓展:(a-b)×c=a×c-b×c 或 a×(b-c) =a×b-a×c
6、连减:a—b—c=a—(b+c) 7、连除: a÷b÷c=a÷(b×c)
知识点四
简便计算一(默写或自己举例子)
一、常见乘法计算:
25×4=100 125×8=1000
二、加法交换律简算例子: 三、加法结合律简算例子:
50+98+50 488+40+60
=50+50+98 =488+(40+60) =100+98 =488+100 =198 =588
四、乘法交换律简算例子: 五、乘法结合律简算例子:
25×56×4 99×125×8 =25×4×56 =99×(125×8) =100×56 =99×1000 =5600 =99000
六、含有加法交换律与结合律的简便计算: 65+28+35+72
=(65+35)+(28+72) =100+100 =200
七、含有乘法交换律与结合律的简便计算:
25×125×4×8
=(25×4)×(125×8) =100×1000 =100000
知识点四
简便计算二(默写或自己举例子)
乘法分配律简算例子:
一、分解式 二、合并式
25×(40+4) 135×12—135×2 =25×40+25×4 =135×(12—2) =1000+100 =135×10 =1100 =1350
三、特殊1 四、特殊2 99×256+256 45×102
=99×256+256×1 =45×(100+2) =256×(99+1) =45×100+45×2 =256×100 =4500+90 =25600 =4590 五、特殊3 六、特殊4
99×26 35×8+35×6—4×35 =(100—1)×26 =35×(8+6—4) =100×26—1×26 =35×10 =2600—26 =350 =2574
知识点四
简便计算三(默写或自己举例子) 一、 连续减法简便运算例子:
528—65—35 528—89—128 528—(150+128) =528—(65+35) =528—128—89 =528—128—150 =528—100 =400—89 =400—150 =428 =311 =250
二、 连续除法简便运算例子: 3200÷25÷4 =3200÷(25×4) =3200÷100 =32
三、 其它简便运算例子:
256—58+44 250÷8×4 =256+44—58 =250×4÷8 =300—58 =1000÷8
=242 =125
知识点五 三角形(第1条到第13条要背诵)
1、由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点到垂足之间的线段叫做三角形的高,这条边叫做三角形的底。三角形只有3条高。
3、三角形具有稳定性。
4、三角形任意两边之和大于第三边。
5、三个角都是锐角的三角形叫做锐角三角形。 6、有一个角是直角的三角形叫做直角三角形。 7、有一个角是钝角的三角形叫做钝角三角形。
8、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。
9、两条边相等的三角形叫做等腰三角形。
10、三条边都相等的三角形叫等边三角形,也叫正三角形。 11、等边三角形是特殊的等腰三角形 12、三角形的内角和是180°。 13、四边形的内角和是360°
14、用2个相同的三角形可以拼成一个平行四边形。
15、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。 16、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。一个大的等腰的直角的三角形。
知识点六
小数的意义和性质(第7、10条默写,其它要理解)
1、小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、 0.01、 0.001…… 2、每相邻两个记数单位间的进率是(10)。
3、小数的数位是十分位、百分位、千分位……最高位是十分位。整数部分的最低位是个位。个位和十分位的进率是10。
4、 小数的数位顺序表
整数部分
小数点
小数部分
数位
…
万位 千位
百位
十位
个位
·
十分位
百分位
千分位
万分
位
… 计数
单位
… 万
千
百
十
一(个)
十分之一
百分之一
千分之一
万分
之一
… 5、小数的读法:先读整数部分(按照原来的读法),再读小数点,再读小数部分。读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。
6、小数的写法:先写整数部分(按照原来的写法),再写小数点,再小数部分:写小数部分,小数部分要依次写出每个数字,而且有几个0就写几个0。
7、小数的性质:小数的末尾添上“0”或者去掉“0”,小数的大小不变。
8、小数的大小比较:(1) 先比较整数部分;(2)如果整数部分相同,就比较十分位;(3)十分位相同,就比较百分位;(4)以此类推,直到比较出大小。
9、小数点的移动 小数点向右移:
移动一位,小数就扩大到原数的10倍; 移动两位,小数就扩大到原数的100倍; 移动三位,小数就扩大到原数的10 00倍;
移动四位,小数就扩大到原数的10000倍;…… 小数点向左移:
移动一位,小数就缩小10倍,即小数就缩小到原数的101
;
移动两位,小数就缩小100倍,即小数就缩小到原数的1001
;
移动三位,小数就缩小1000倍,即小数就缩小到原数的1000
1
;
移动四位,小数就缩小10000倍,即小数就缩小到原数的10000
1
;……
10、生活中常用的单位:
质量: 1吨=1000千克; 1千克=1000克
长度: 1千米=1000米 1分米=10厘米 1厘米=10毫米 1分米=100毫米 1米=10分米=100厘米=1000毫米 面积: 1平方米= 100平方分米 1平方分米=100平方厘米 1平方千米=100公顷 1公顷=10000平方米 人民币: 1元=10角 1角=10分 1元=100分 11、小数的近似数(用“四舍五入”的方法):
(1)保留整数,表示精确到个位,就是要把小数部分省略,要看十分位,如果十分位的数字大于或等于5则向前一位进一。如果小于五则舍。
(2)保留一位小数,表示精确到十分位,就要把第一位小数以后的部分全部省略, 这时要看小数的第二位,如果第二位的数字比5小则全部舍。反之,要向前一位进一。
(3)保留两位小数,表示精确到百分位,就要把第二位小数以后的部分全部省略,这时要看小数的第三位,如果第三位的数字比5小则全部舍。反之,要向前一位进一。
(4)为了读写的方便,常常把不是整万或整亿的数改写成用“万”或“亿”作单位的数。改写成“万”作单位的数就是小数点向左移4位,即在万位的右边点上小数点,在数的后面加上“万”字。改写成“亿”作单位的数就是小数点往左移8位即在亿位的右边点上小数点,在数的后面加上“亿”字。然后再根据小数的性质把小数末尾的零去掉即可。
知识点七
小数的加法和减法(第1条背诵)
1、小数的加、减法要注意:小数点要对齐也就是把数位对齐,得数的末尾有0,一般要把0去掉。
2、整数的运算定律(以及简便的方法)在小数运算中同样适用。
知识点八
统计图(背诵)
1、 条形统计图优点:直观地反映数量的多少。
2、 折线统计图优点:既可以反映数量的多少,又能反映数量的增减变化。 3、 折线统计图中,变化趋势指:上升或者下降。 知识点九
数学广角(默写)
(一)植树问题:
1、 两端要栽:间隔数=总长÷间距; 总长=间距×间隔数; 棵数=间隔数+1; 间隔数=棵数-1
2、 两端不栽:间隔数=总长÷间距; 总长=间距×间隔数; 棵数=间隔数-1; 间隔数=棵数+1
(二)锯木问题: 段数=次数+1; 次数=段数-1 总时间=每次时间×次数
(三)方阵问题: 最外层的数目是:边长×4—4或者是(边长-1)×4 整个方阵的总数目是:边长×边长
(四)封闭的图形(例如围成一个圆形、椭圆形): 总长÷间距=间隔数;棵数=间隔数
知识点一
四则运算(背诵)
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。 4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
知识点二
0的运算(默写)
1、“0”不能做除数; 字母表示:a÷0错误 2、一个数加上0还得原数; 字母表示:a+0= a 3、一个数减去0还得原数; 字母表示:a-0= a 4、被减数等于减数,差是0; 字母表示:a-a = 0 4、一个数和0相乘,仍得0; 字母表示:a×0= 0 5、0除以任何非0的数,还得0; 字母表示:0÷a(a≠0)= 0
知识点三 运算定律(默写)
1、 加法交换律:a+b=b+a
2、 加法结合律:(a+b) +c=a+(b+c) 3、 乘法交换律:a×b=b×a
4、 乘法结合律:(a×b)×c=a×(b×c)
5、 乘法分配律:(a+b)×c=a×c+b×c 或 a×(b+c) =a×b+a×c
拓展:(a-b)×c=a×c-b×c 或 a×(b-c) =a×b-a×c
6、连减:a—b—c=a—(b+c) 7、连除: a÷b÷c=a÷(b×c)
知识点四
简便计算一(默写或自己举例子)
一、常见乘法计算:
25×4=100 125×8=1000
二、加法交换律简算例子: 三、加法结合律简算例子:
50+98+50 488+40+60
=50+50+98 =488+(40+60) =100+98 =488+100 =198 =588
四、乘法交换律简算例子: 五、乘法结合律简算例子:
25×56×4 99×125×8 =25×4×56 =99×(125×8) =100×56 =99×1000 =5600 =99000
六、含有加法交换律与结合律的简便计算: 65+28+35+72
=(65+35)+(28+72) =100+100 =200
七、含有乘法交换律与结合律的简便计算:
25×125×4×8
=(25×4)×(125×8) =100×1000 =100000
知识点四
简便计算二(默写或自己举例子)
乘法分配律简算例子:
一、分解式 二、合并式
25×(40+4) 135×12—135×2 =25×40+25×4 =135×(12—2) =1000+100 =135×10 =1100 =1350
三、特殊1 四、特殊2 99×256+256 45×102
=99×256+256×1 =45×(100+2) =256×(99+1) =45×100+45×2 =256×100 =4500+90 =25600 =4590 五、特殊3 六、特殊4
99×26 35×8+35×6—4×35 =(100—1)×26 =35×(8+6—4) =100×26—1×26 =35×10 =2600—26 =350 =2574
知识点四
简便计算三(默写或自己举例子) 一、 连续减法简便运算例子:
528—65—35 528—89—128 528—(150+128) =528—(65+35) =528—128—89 =528—128—150 =528—100 =400—89 =400—150 =428 =311 =250
二、 连续除法简便运算例子: 3200÷25÷4 =3200÷(25×4) =3200÷100 =32
三、 其它简便运算例子:
256—58+44 250÷8×4 =256+44—58 =250×4÷8 =300—58 =1000÷8
=242 =125
知识点五 三角形(第1条到第13条要背诵)
1、由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点到垂足之间的线段叫做三角形的高,这条边叫做三角形的底。三角形只有3条高。
3、三角形具有稳定性。
4、三角形任意两边之和大于第三边。
5、三个角都是锐角的三角形叫做锐角三角形。 6、有一个角是直角的三角形叫做直角三角形。 7、有一个角是钝角的三角形叫做钝角三角形。
8、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。
9、两条边相等的三角形叫做等腰三角形。
10、三条边都相等的三角形叫等边三角形,也叫正三角形。 11、等边三角形是特殊的等腰三角形 12、三角形的内角和是180°。 13、四边形的内角和是360°
14、用2个相同的三角形可以拼成一个平行四边形。
15、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。 16、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。一个大的等腰的直角的三角形。
知识点六
小数的意义和性质(第7、10条默写,其它要理解)
1、小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、 0.01、 0.001…… 2、每相邻两个记数单位间的进率是(10)。
3、小数的数位是十分位、百分位、千分位……最高位是十分位。整数部分的最低位是个位。个位和十分位的进率是10。
4、 小数的数位顺序表
整数部分
小数点
小数部分
数位
…
万位 千位
百位
十位
个位
·
十分位
百分位
千分位
万分
位
… 计数
单位
… 万
千
百
十
一(个)
十分之一
百分之一
千分之一
万分
之一
… 5、小数的读法:先读整数部分(按照原来的读法),再读小数点,再读小数部分。读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。
6、小数的写法:先写整数部分(按照原来的写法),再写小数点,再小数部分:写小数部分,小数部分要依次写出每个数字,而且有几个0就写几个0。
7、小数的性质:小数的末尾添上“0”或者去掉“0”,小数的大小不变。
8、小数的大小比较:(1) 先比较整数部分;(2)如果整数部分相同,就比较十分位;(3)十分位相同,就比较百分位;(4)以此类推,直到比较出大小。
9、小数点的移动 小数点向右移:
移动一位,小数就扩大到原数的10倍; 移动两位,小数就扩大到原数的100倍; 移动三位,小数就扩大到原数的10 00倍;
移动四位,小数就扩大到原数的10000倍;…… 小数点向左移:
移动一位,小数就缩小10倍,即小数就缩小到原数的101
;
移动两位,小数就缩小100倍,即小数就缩小到原数的1001
;
移动三位,小数就缩小1000倍,即小数就缩小到原数的1000
1
;
移动四位,小数就缩小10000倍,即小数就缩小到原数的10000
1
;……
10、生活中常用的单位:
质量: 1吨=1000千克; 1千克=1000克
长度: 1千米=1000米 1分米=10厘米 1厘米=10毫米 1分米=100毫米 1米=10分米=100厘米=1000毫米 面积: 1平方米= 100平方分米 1平方分米=100平方厘米 1平方千米=100公顷 1公顷=10000平方米 人民币: 1元=10角 1角=10分 1元=100分 11、小数的近似数(用“四舍五入”的方法):
(1)保留整数,表示精确到个位,就是要把小数部分省略,要看十分位,如果十分位的数字大于或等于5则向前一位进一。如果小于五则舍。
(2)保留一位小数,表示精确到十分位,就要把第一位小数以后的部分全部省略, 这时要看小数的第二位,如果第二位的数字比5小则全部舍。反之,要向前一位进一。
(3)保留两位小数,表示精确到百分位,就要把第二位小数以后的部分全部省略,这时要看小数的第三位,如果第三位的数字比5小则全部舍。反之,要向前一位进一。
(4)为了读写的方便,常常把不是整万或整亿的数改写成用“万”或“亿”作单位的数。改写成“万”作单位的数就是小数点向左移4位,即在万位的右边点上小数点,在数的后面加上“万”字。改写成“亿”作单位的数就是小数点往左移8位即在亿位的右边点上小数点,在数的后面加上“亿”字。然后再根据小数的性质把小数末尾的零去掉即可。
知识点七
小数的加法和减法(第1条背诵)
1、小数的加、减法要注意:小数点要对齐也就是把数位对齐,得数的末尾有0,一般要把0去掉。
2、整数的运算定律(以及简便的方法)在小数运算中同样适用。
知识点八
统计图(背诵)
1、 条形统计图优点:直观地反映数量的多少。
2、 折线统计图优点:既可以反映数量的多少,又能反映数量的增减变化。 3、 折线统计图中,变化趋势指:上升或者下降。 知识点九
数学广角(默写)
(一)植树问题:
1、 两端要栽:间隔数=总长÷间距; 总长=间距×间隔数; 棵数=间隔数+1; 间隔数=棵数-1
2、 两端不栽:间隔数=总长÷间距; 总长=间距×间隔数; 棵数=间隔数-1; 间隔数=棵数+1
(二)锯木问题: 段数=次数+1; 次数=段数-1 总时间=每次时间×次数
(三)方阵问题: 最外层的数目是:边长×4—4或者是(边长-1)×4 整个方阵的总数目是:边长×边长
(四)封闭的图形(例如围成一个圆形、椭圆形): 总长÷间距=间隔数;棵数=间隔数
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1. 10个一万是十万,10个十万是一百万,10个一百万是一千万,10个一千万是一亿。
相邻两个计数单位之间的进率是“十” ,这种计数方法叫做十进制计数法。
特别注意:计数单位与数位的区别。
2、在用数字表示数的时候,这些计数单位要按照一定的顺序排列起来,它们所占的位置叫做数位。
3、位数:一个数含有几个数位,就是几位数,如652100是个六位数。
4、按照我国的计数习惯,从右边起,每四个数位是一级。
6、亿以上数的读法:
① 先分级,从高位开始读起。先读亿级,再读万级,最后读个级。
② 亿级的数要按照个级的数的读法来读,再在后面加上一个“亿”字。万级的数要按照个级的数的读法来读,再在后面加上一个“万”字。
③ 每级末尾不管有几个0,都不读。其他数位有一个“0”或连续几个“0”,都只读一个“0”。
7、亿以上数的写法:
① 从最高位写起,先写亿级,再写万级,最后写个级。
② 哪个数位上一个单位也没有,就在那个数位上写0。
8、比较数的大小:
① 位数不同的两个数,位数多的数比较大。
② 位数相同的两个数,从最高位开始比较。
9、求近似数:
省略万位后面的尾数,要看千位上的数;省略亿位后面的尾数,要看千万位上的数。
这种求近似数的方法叫“四舍五入法”,是“舍”还是“入”,要看省略的尾数最高位上的数是小于5 还是等于或大于5 。小于5就舍去尾数,等于或大于5就向前一位进1,再舍去尾数。
10、表示物体个数:1,2 ,3, 4, 5 ,6 ,7 ,8 ,9 ,10, ……. 都是自然数。一个物体也没有,用0来表示, 0也是自然数。所有的自然数都是整数。
11、最小的自然数是0,没有最大的自然数,自然数的个数是无限的。
12、每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。
13、ON╱CE:开关及清除屏键,清除显示屏上的内容。
AC:清除键,清除所有内容。
第二单元
公顷和平方千米
1、边长是100米的正方形面积是1公顷。
1公顷 = 10000平方米
2、边长是1千米的正方形面积是1平方千米。
1平方千米 = 1000000平方米
1平方千米=100公顷
3、从大单位变到小单位,乘以进率。
从小单位变到大单位,除以进率。
4、国土面积(中国、省、市、区等)、海洋面积等特别大的面积适合用平方千米。如:
香港特别行政区的面积约1100( )。
广场、校园等稍大土地面积适合用公顷。如天安门广场的占地面积大约是44( );
操场、教室等较小的面积适合用平方米。如一个教室的面积约60( );
5、长方形面积 = 长 × 宽
正方形面积 = 边长 × 边长
第三单元
角的度量
1、直线、射线、线段
直线:可以向两端无限延伸,没有端点。
射线:可以向一端无限延伸,只有一个端点。
线段:不能延伸,有两个端点,线段是直线的一部分。
2、直线、射线与线段有什么联系和区别?
①、直线和射线都可以无限延伸,因此无法量出长短。
②、线段可以量出长度。
③、线段有两个端点,直线没有端点,射线只有一个端点。
名称
形状
端点
延伸
线段
直的
2
不能
射线
直的
1
一端
直线
直的
0
两端
3、从一点引出两条射线所组成的图形叫做角。
4、角的计量单位是“度”,用符号“ °”表示。
将圆平均分成360 份,每一份所对的角的大小是l 度,记做1°。
5、角的大小与角两边的长短没关系。角的大小与叉开的大小有关系,叉开得越大,角越大。
6、度量角的工具叫量角器。
7、量角的步骤:
①把量角器的中心与角的顶点重合,0°刻度线与角的一条边重合。
②角的另一条边所对的量角器上的刻度,就是这个角的度数。
8、角可以看作由一条射线绕着它的端点,从一个位置旋转到另一个位置所成的图形。
9、一条射线绕它的端点旋转半周,形成的角叫做平角。1平角=180°
10、一条射线绕它的端点旋转一周,形成的角叫做周角。1周角=360°
1周角=2平角=4直角 1直角=90°
11、小于90度的角叫做锐角,大于90度而小于180度的角叫做钝角。
锐角<直角<钝角<平角<周角
12、画角的步骤:
(1)画一条射线,使量角器的中心和射线的端点重合,0°刻度线和射线重合。
(2)在量角器上找到要画的角的度数(如65°)的地方,并点一个点。
(3)以画出的射线的端点为端点,通过刚画的点再画一条射线。
13、经过一点可以画无数条直线;经过两个点,只能画一条直线。
14、用三角板可以画的角:180°165°150°135°120°105°90°75°60°45°30°15°
第四单元
三位数乘两位数
1、三位数乘两位数的笔算方法:
先用两位数个位上的数去乘三位数,积的末位和两位数的个位对齐;再用两位数十位上的数去乘三位数,积的末位和两位数的十位对齐;最后把两次乘得的积加起来。
1、积的变化规律:
一个因数不变,另一个因数乘(或除以)几(0除外),积也乘(或除以)几。
3、每件商品的价钱,叫做单价;买了多少,叫做数量;一共用的价钱,叫做总价。
单价 ×数量 = 总价
单价=总价 ÷ 数量
数量= 总价 ÷ 单价
4、一共行了多长的路,叫做路程;每小时(或每分钟等)行的路程,叫做速度;行了几小时(或几分钟等),叫做时间。
速度 ×时间= 路程
速度=路程 ÷ 时间
时间=路程 ÷ 速度
5、速度单位通常有:千米/时、米/分、米/秒等。
第五单元
平行四边形和梯形
1、在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。
记作:a∥b 读作:a平行于b
2、两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。记作:a⊥b 读作:a垂直于b
3、从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。
4、与两条平行线互相垂直的线段长度都相等。或者说:两条平行线之间的距离处处相等。
经过直线上一点(或外一点)作垂线,可以画一条。
5、同一平面内,与同一条直线平行(或垂直)的两条直线也互相平行。
6、从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。
7、一个长方形,用两手捏住长方形的两个对角,向相反方向拉,可以拉成不同形状的平行四边形,但是周长不变。
8、平行四边形的特点:容易变形。例如:伸缩门、升降机
9、平行四边形和梯形有无数条高。
10、两腰相等的梯形叫做等腰梯形。 特点:两腰相等,两底角相等。
11、有一个角是直角的梯形叫做直角梯形。 特点:有一条腰就是梯形的高。
12、从梯形上底任取一个点,向下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。
13、两个完全一样的三角形可以拼成一个平行四边形。
两个完全一样的梯形可以拼成一个平行四边形。
两个完全一样的直角梯形可以拼成一个长方形或平行四边形。
14、长方形是特殊的平行四边形,正方形是特殊的平行四边形。正方形是特殊的长方形。
15、三角形三个内角的和是180°,四边形四个内角的和是360°。
16、四边形小结:
两组对边分别平行的四边形叫做平行四边形;
只有一组对边平行的四边形叫梯形。
两腰相等的梯形叫做等腰梯形。
有一个角是直角的梯形叫做直角梯形。
四个角都是直角的四边形叫长方形。
四个角都是直角,并且四条边都相等的四边形叫正方形。
第六单元
除数是两位数的除法
1、去0法:被除数和除数的末尾同时去掉相同个数的0,商不变。
2、除数是两位数的除法的计算方法:
从被除数的高位除起,先用除数试除被除数的前两位数,如果它比除数小,再试除前三位数。
除到被除数的哪一位,就在那一位上写商。
求出每一位商,余下的数必须比除数小。
3、商的变化规律:
被除数和商的变化相同。
除数和商的变化相反。
商不变的性质:被除数和除数同时乘(或除以)一个相同的数(0除外),商不变。
除数× 商 + 余数 = 被除数
(被除数-余数)÷ 商 = 除数
第七单元
条形统计图
1、条形统计图的特点:能直观的看出各种数量的大小,便于比较。
2、在绘制条形统计图时,条形图一格表示几,要根据具体情况来确定
第八单元
数学广角--优化
1、沏茶问题:
合理安排时间的过程:(1)明确完成一项工作要做哪些事情;(2)明确每项事情各需要多少时间;(3)合理安排工作的顺序,明确先做什么,后做什么,哪些事情可以同时做。
2、烙饼问题:烙饼的最优方案是每一次尽可能的让锅里按要求放最多的饼,这样既没有浪费资源,又节省时间。
3、对策论问题:解决同一个问题有不同的策略,要学会寻找最优方案。可以用列举法选择最优方案。
相邻两个计数单位之间的进率是“十” ,这种计数方法叫做十进制计数法。
特别注意:计数单位与数位的区别。
2、在用数字表示数的时候,这些计数单位要按照一定的顺序排列起来,它们所占的位置叫做数位。
3、位数:一个数含有几个数位,就是几位数,如652100是个六位数。
4、按照我国的计数习惯,从右边起,每四个数位是一级。
6、亿以上数的读法:
① 先分级,从高位开始读起。先读亿级,再读万级,最后读个级。
② 亿级的数要按照个级的数的读法来读,再在后面加上一个“亿”字。万级的数要按照个级的数的读法来读,再在后面加上一个“万”字。
③ 每级末尾不管有几个0,都不读。其他数位有一个“0”或连续几个“0”,都只读一个“0”。
7、亿以上数的写法:
① 从最高位写起,先写亿级,再写万级,最后写个级。
② 哪个数位上一个单位也没有,就在那个数位上写0。
8、比较数的大小:
① 位数不同的两个数,位数多的数比较大。
② 位数相同的两个数,从最高位开始比较。
9、求近似数:
省略万位后面的尾数,要看千位上的数;省略亿位后面的尾数,要看千万位上的数。
这种求近似数的方法叫“四舍五入法”,是“舍”还是“入”,要看省略的尾数最高位上的数是小于5 还是等于或大于5 。小于5就舍去尾数,等于或大于5就向前一位进1,再舍去尾数。
10、表示物体个数:1,2 ,3, 4, 5 ,6 ,7 ,8 ,9 ,10, ……. 都是自然数。一个物体也没有,用0来表示, 0也是自然数。所有的自然数都是整数。
11、最小的自然数是0,没有最大的自然数,自然数的个数是无限的。
12、每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。
13、ON╱CE:开关及清除屏键,清除显示屏上的内容。
AC:清除键,清除所有内容。
第二单元
公顷和平方千米
1、边长是100米的正方形面积是1公顷。
1公顷 = 10000平方米
2、边长是1千米的正方形面积是1平方千米。
1平方千米 = 1000000平方米
1平方千米=100公顷
3、从大单位变到小单位,乘以进率。
从小单位变到大单位,除以进率。
4、国土面积(中国、省、市、区等)、海洋面积等特别大的面积适合用平方千米。如:
香港特别行政区的面积约1100( )。
广场、校园等稍大土地面积适合用公顷。如天安门广场的占地面积大约是44( );
操场、教室等较小的面积适合用平方米。如一个教室的面积约60( );
5、长方形面积 = 长 × 宽
正方形面积 = 边长 × 边长
第三单元
角的度量
1、直线、射线、线段
直线:可以向两端无限延伸,没有端点。
射线:可以向一端无限延伸,只有一个端点。
线段:不能延伸,有两个端点,线段是直线的一部分。
2、直线、射线与线段有什么联系和区别?
①、直线和射线都可以无限延伸,因此无法量出长短。
②、线段可以量出长度。
③、线段有两个端点,直线没有端点,射线只有一个端点。
名称
形状
端点
延伸
线段
直的
2
不能
射线
直的
1
一端
直线
直的
0
两端
3、从一点引出两条射线所组成的图形叫做角。
4、角的计量单位是“度”,用符号“ °”表示。
将圆平均分成360 份,每一份所对的角的大小是l 度,记做1°。
5、角的大小与角两边的长短没关系。角的大小与叉开的大小有关系,叉开得越大,角越大。
6、度量角的工具叫量角器。
7、量角的步骤:
①把量角器的中心与角的顶点重合,0°刻度线与角的一条边重合。
②角的另一条边所对的量角器上的刻度,就是这个角的度数。
8、角可以看作由一条射线绕着它的端点,从一个位置旋转到另一个位置所成的图形。
9、一条射线绕它的端点旋转半周,形成的角叫做平角。1平角=180°
10、一条射线绕它的端点旋转一周,形成的角叫做周角。1周角=360°
1周角=2平角=4直角 1直角=90°
11、小于90度的角叫做锐角,大于90度而小于180度的角叫做钝角。
锐角<直角<钝角<平角<周角
12、画角的步骤:
(1)画一条射线,使量角器的中心和射线的端点重合,0°刻度线和射线重合。
(2)在量角器上找到要画的角的度数(如65°)的地方,并点一个点。
(3)以画出的射线的端点为端点,通过刚画的点再画一条射线。
13、经过一点可以画无数条直线;经过两个点,只能画一条直线。
14、用三角板可以画的角:180°165°150°135°120°105°90°75°60°45°30°15°
第四单元
三位数乘两位数
1、三位数乘两位数的笔算方法:
先用两位数个位上的数去乘三位数,积的末位和两位数的个位对齐;再用两位数十位上的数去乘三位数,积的末位和两位数的十位对齐;最后把两次乘得的积加起来。
1、积的变化规律:
一个因数不变,另一个因数乘(或除以)几(0除外),积也乘(或除以)几。
3、每件商品的价钱,叫做单价;买了多少,叫做数量;一共用的价钱,叫做总价。
单价 ×数量 = 总价
单价=总价 ÷ 数量
数量= 总价 ÷ 单价
4、一共行了多长的路,叫做路程;每小时(或每分钟等)行的路程,叫做速度;行了几小时(或几分钟等),叫做时间。
速度 ×时间= 路程
速度=路程 ÷ 时间
时间=路程 ÷ 速度
5、速度单位通常有:千米/时、米/分、米/秒等。
第五单元
平行四边形和梯形
1、在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。
记作:a∥b 读作:a平行于b
2、两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。记作:a⊥b 读作:a垂直于b
3、从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。
4、与两条平行线互相垂直的线段长度都相等。或者说:两条平行线之间的距离处处相等。
经过直线上一点(或外一点)作垂线,可以画一条。
5、同一平面内,与同一条直线平行(或垂直)的两条直线也互相平行。
6、从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。
7、一个长方形,用两手捏住长方形的两个对角,向相反方向拉,可以拉成不同形状的平行四边形,但是周长不变。
8、平行四边形的特点:容易变形。例如:伸缩门、升降机
9、平行四边形和梯形有无数条高。
10、两腰相等的梯形叫做等腰梯形。 特点:两腰相等,两底角相等。
11、有一个角是直角的梯形叫做直角梯形。 特点:有一条腰就是梯形的高。
12、从梯形上底任取一个点,向下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。
13、两个完全一样的三角形可以拼成一个平行四边形。
两个完全一样的梯形可以拼成一个平行四边形。
两个完全一样的直角梯形可以拼成一个长方形或平行四边形。
14、长方形是特殊的平行四边形,正方形是特殊的平行四边形。正方形是特殊的长方形。
15、三角形三个内角的和是180°,四边形四个内角的和是360°。
16、四边形小结:
两组对边分别平行的四边形叫做平行四边形;
只有一组对边平行的四边形叫梯形。
两腰相等的梯形叫做等腰梯形。
有一个角是直角的梯形叫做直角梯形。
四个角都是直角的四边形叫长方形。
四个角都是直角,并且四条边都相等的四边形叫正方形。
第六单元
除数是两位数的除法
1、去0法:被除数和除数的末尾同时去掉相同个数的0,商不变。
2、除数是两位数的除法的计算方法:
从被除数的高位除起,先用除数试除被除数的前两位数,如果它比除数小,再试除前三位数。
除到被除数的哪一位,就在那一位上写商。
求出每一位商,余下的数必须比除数小。
3、商的变化规律:
被除数和商的变化相同。
除数和商的变化相反。
商不变的性质:被除数和除数同时乘(或除以)一个相同的数(0除外),商不变。
除数× 商 + 余数 = 被除数
(被除数-余数)÷ 商 = 除数
第七单元
条形统计图
1、条形统计图的特点:能直观的看出各种数量的大小,便于比较。
2、在绘制条形统计图时,条形图一格表示几,要根据具体情况来确定
第八单元
数学广角--优化
1、沏茶问题:
合理安排时间的过程:(1)明确完成一项工作要做哪些事情;(2)明确每项事情各需要多少时间;(3)合理安排工作的顺序,明确先做什么,后做什么,哪些事情可以同时做。
2、烙饼问题:烙饼的最优方案是每一次尽可能的让锅里按要求放最多的饼,这样既没有浪费资源,又节省时间。
3、对策论问题:解决同一个问题有不同的策略,要学会寻找最优方案。可以用列举法选择最优方案。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
四年级下册数学背诵或默写知识点
知识点一
四则运算(背诵)
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。 4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
知识点二
0的运算(默写)
1、“0”不能做除数; 字母表示:a÷0错误 2、一个数加上0还得原数; 字母表示:a+0= a 3、一个数减去0还得原数; 字母表示:a-0= a 4、被减数等于减数,差是0; 字母表示:a-a = 0 4、一个数和0相乘,仍得0; 字母表示:a×0= 0 5、0除以任何非0的数,还得0; 字母表示:0÷a(a≠0)= 0
知识点三 运算定律(默写)
1、 加法交换律:a+b=b+a
2、 加法结合律:(a+b) +c=a+(b+c) 3、 乘法交换律:a×b=b×a
4、 乘法结合律:(a×b)×c=a×(b×c)
5、 乘法分配律:(a+b)×c=a×c+b×c 或 a×(b+c) =a×b+a×c
拓展:(a-b)×c=a×c-b×c 或 a×(b-c) =a×b-a×c
6、连减:a—b—c=a—(b+c) 7、连除: a÷b÷c=a÷(b×c)
知识点四
简便计算一(默写或自己举例子)
一、常见乘法计算:
25×4=100 125×8=1000
二、加法交换律简算例子: 三、加法结合律简算例子:
50+98+50 488+40+60
=50+50+98 =488+(40+60) =100+98 =488+100 =198 =588
四、乘法交换律简算例子: 五、乘法结合律简算例子:
25×56×4 99×125×8 =25×4×56 =99×(125×8) =100×56 =99×1000 =5600 =99000
六、含有加法交换律与结合律的简便计算: 65+28+35+72
=(65+35)+(28+72) =100+100 =200
七、含有乘法交换律与结合律的简便计算:
25×125×4×8
=(25×4)×(125×8) =100×1000 =100000
知识点四
简便计算二(默写或自己举例子)
乘法分配律简算例子:
一、分解式 二、合并式
25×(40+4) 135×12—135×2 =25×40+25×4 =135×(12—2) =1000+100 =135×10 =1100 =1350
三、特殊1 四、特殊2 99×256+256 45×102
=99×256+256×1 =45×(100+2) =256×(99+1) =45×100+45×2 =256×100 =4500+90 =25600 =4590 五、特殊3 六、特殊4
99×26 35×8+35×6—4×35 =(100—1)×26 =35×(8+6—4) =100×26—1×26 =35×10 =2600—26 =350 =2574
知识点四
简便计算三(默写或自己举例子) 一、 连续减法简便运算例子:
528—65—35 528—89—128 528—(150+128) =528—(65+35) =528—128—89 =528—128—150 =528—100 =400—89 =400—150 =428 =311 =250
二、 连续除法简便运算例子: 3200÷25÷4 =3200÷(25×4) =3200÷100 =32
三、 其它简便运算例子:
256—58+44 250÷8×4 =256+44—58 =250×4÷8 =300—58 =1000÷8
=242 =125
知识点五 三角形(第1条到第13条要背诵)
1、由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点到垂足之间的线段叫做三角形的高,这条边叫做三角形的底。三角形只有3条高。
3、三角形具有稳定性。
4、三角形任意两边之和大于第三边。
5、三个角都是锐角的三角形叫做锐角三角形。 6、有一个角是直角的三角形叫做直角三角形。 7、有一个角是钝角的三角形叫做钝角三角形。
8、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。
9、两条边相等的三角形叫做等腰三角形。
10、三条边都相等的三角形叫等边三角形,也叫正三角形。 11、等边三角形是特殊的等腰三角形 12、三角形的内角和是180°。 13、四边形的内角和是360°
14、用2个相同的三角形可以拼成一个平行四边形。
15、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。 16、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。一个大的等腰的直角的三角形。
知识点六
小数的意义和性质(第7、10条默写,其它要理解)
1、小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、 0.01、 0.001…… 2、每相邻两个记数单位间的进率是(10)。
3、小数的数位是十分位、百分位、千分位……最高位是十分位。整数部分的最低位是个位。个位和十分位的进率是10。
4、 小数的数位顺序表
整数部分
小数点
小数部分
数位
…
万位 千位
百位
十位
个位
·
十分位
百分位
千分位
万分
位
… 计数
单位
… 万
千
百
十
一(个)
十分之一
百分之一
千分之一
万分
之一
… 5、小数的读法:先读整数部分(按照原来的读法),再读小数点,再读小数部分。读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。
6、小数的写法:先写整数部分(按照原来的写法),再写小数点,再小数部分:写小数部分,小数部分要依次写出每个数字,而且有几个0就写几个0。
7、小数的性质:小数的末尾添上“0”或者去掉“0”,小数的大小不变。
8、小数的大小比较:(1) 先比较整数部分;(2)如果整数部分相同,就比较十分位;(3)十分位相同,就比较百分位;(4)以此类推,直到比较出大小。
9、小数点的移动 小数点向右移:
移动一位,小数就扩大到原数的10倍; 移动两位,小数就扩大到原数的100倍; 移动三位,小数就扩大到原数的10 00倍;
移动四位,小数就扩大到原数的10000倍;…… 小数点向左移:
移动一位,小数就缩小10倍,即小数就缩小到原数的101
;
移动两位,小数就缩小100倍,即小数就缩小到原数的1001
;
移动三位,小数就缩小1000倍,即小数就缩小到原数的1000
1
;
移动四位,小数就缩小10000倍,即小数就缩小到原数的10000
1
;……
10、生活中常用的单位:
质量: 1吨=1000千克; 1千克=1000克
长度: 1千米=1000米 1分米=10厘米 1厘米=10毫米 1分米=100毫米 1米=10分米=100厘米=1000毫米 面积: 1平方米= 100平方分米 1平方分米=100平方厘米 1平方千米=100公顷 1公顷=10000平方米 人民币: 1元=10角 1角=10分 1元=100分 11、小数的近似数(用“四舍五入”的方法):
(1)保留整数,表示精确到个位,就是要把小数部分省略,要看十分位,如果十分位的数字大于或等于5则向前一位进一。如果小于五则舍。
(2)保留一位小数,表示精确到十分位,就要把第一位小数以后的部分全部省略, 这时要看小数的第二位,如果第二位的数字比5小则全部舍。反之,要向前一位进一。
(3)保留两位小数,表示精确到百分位,就要把第二位小数以后的部分全部省略,这时要看小数的第三位,如果第三位的数字比5小则全部舍。反之,要向前一位进一。
(4)为了读写的方便,常常把不是整万或整亿的数改写成用“万”或“亿”作单位的数。改写成“万”作单位的数就是小数点向左移4位,即在万位的右边点上小数点,在数的后面加上“万”字。改写成“亿”作单位的数就是小数点往左移8位即在亿位的右边点上小数点,在数的后面加上“亿”字。然后再根据小数的性质把小数末尾的零去掉即可。
知识点七
小数的加法和减法(第1条背诵)
1、小数的加、减法要注意:小数点要对齐也就是把数位对齐,得数的末尾有0,一般要把0去掉。
2、整数的运算定律(以及简便的方法)在小数运算中同样适用。
知识点八
统计图(背诵)
1、 条形统计图优点:直观地反映数量的多少。
2、 折线统计图优点:既可以反映数量的多少,又能反映数量的增减变化。 3、 折线统计图中,变化趋势指:上升或者下降。 知识点九
数学广角(默写)
(一)植树问题:
1、 两端要栽:间隔数=总长÷间距; 总长=间距×间隔数; 棵数=间隔数+1; 间隔数=棵数-1
2、 两端不栽:间隔数=总长÷间距; 总长=间距×间隔数; 棵数=间隔数-1; 间隔数=棵数+1
(二)锯木问题: 段数=次数+1; 次数=段数-1 总时间=每次时间×次数
(三)方阵问题: 最外层的数目是:边长×4—4或者是(边长-1)×4 整个方阵的总数目是:边长×边长
(四)封闭的图形(例如围成一个圆形、椭圆形): 总长÷间距=间隔数;棵数=间隔数
知识点一
四则运算(背诵)
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。 4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
知识点二
0的运算(默写)
1、“0”不能做除数; 字母表示:a÷0错误 2、一个数加上0还得原数; 字母表示:a+0= a 3、一个数减去0还得原数; 字母表示:a-0= a 4、被减数等于减数,差是0; 字母表示:a-a = 0 4、一个数和0相乘,仍得0; 字母表示:a×0= 0 5、0除以任何非0的数,还得0; 字母表示:0÷a(a≠0)= 0
知识点三 运算定律(默写)
1、 加法交换律:a+b=b+a
2、 加法结合律:(a+b) +c=a+(b+c) 3、 乘法交换律:a×b=b×a
4、 乘法结合律:(a×b)×c=a×(b×c)
5、 乘法分配律:(a+b)×c=a×c+b×c 或 a×(b+c) =a×b+a×c
拓展:(a-b)×c=a×c-b×c 或 a×(b-c) =a×b-a×c
6、连减:a—b—c=a—(b+c) 7、连除: a÷b÷c=a÷(b×c)
知识点四
简便计算一(默写或自己举例子)
一、常见乘法计算:
25×4=100 125×8=1000
二、加法交换律简算例子: 三、加法结合律简算例子:
50+98+50 488+40+60
=50+50+98 =488+(40+60) =100+98 =488+100 =198 =588
四、乘法交换律简算例子: 五、乘法结合律简算例子:
25×56×4 99×125×8 =25×4×56 =99×(125×8) =100×56 =99×1000 =5600 =99000
六、含有加法交换律与结合律的简便计算: 65+28+35+72
=(65+35)+(28+72) =100+100 =200
七、含有乘法交换律与结合律的简便计算:
25×125×4×8
=(25×4)×(125×8) =100×1000 =100000
知识点四
简便计算二(默写或自己举例子)
乘法分配律简算例子:
一、分解式 二、合并式
25×(40+4) 135×12—135×2 =25×40+25×4 =135×(12—2) =1000+100 =135×10 =1100 =1350
三、特殊1 四、特殊2 99×256+256 45×102
=99×256+256×1 =45×(100+2) =256×(99+1) =45×100+45×2 =256×100 =4500+90 =25600 =4590 五、特殊3 六、特殊4
99×26 35×8+35×6—4×35 =(100—1)×26 =35×(8+6—4) =100×26—1×26 =35×10 =2600—26 =350 =2574
知识点四
简便计算三(默写或自己举例子) 一、 连续减法简便运算例子:
528—65—35 528—89—128 528—(150+128) =528—(65+35) =528—128—89 =528—128—150 =528—100 =400—89 =400—150 =428 =311 =250
二、 连续除法简便运算例子: 3200÷25÷4 =3200÷(25×4) =3200÷100 =32
三、 其它简便运算例子:
256—58+44 250÷8×4 =256+44—58 =250×4÷8 =300—58 =1000÷8
=242 =125
知识点五 三角形(第1条到第13条要背诵)
1、由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点到垂足之间的线段叫做三角形的高,这条边叫做三角形的底。三角形只有3条高。
3、三角形具有稳定性。
4、三角形任意两边之和大于第三边。
5、三个角都是锐角的三角形叫做锐角三角形。 6、有一个角是直角的三角形叫做直角三角形。 7、有一个角是钝角的三角形叫做钝角三角形。
8、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。
9、两条边相等的三角形叫做等腰三角形。
10、三条边都相等的三角形叫等边三角形,也叫正三角形。 11、等边三角形是特殊的等腰三角形 12、三角形的内角和是180°。 13、四边形的内角和是360°
14、用2个相同的三角形可以拼成一个平行四边形。
15、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。 16、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。一个大的等腰的直角的三角形。
知识点六
小数的意义和性质(第7、10条默写,其它要理解)
1、小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、 0.01、 0.001…… 2、每相邻两个记数单位间的进率是(10)。
3、小数的数位是十分位、百分位、千分位……最高位是十分位。整数部分的最低位是个位。个位和十分位的进率是10。
4、 小数的数位顺序表
整数部分
小数点
小数部分
数位
…
万位 千位
百位
十位
个位
·
十分位
百分位
千分位
万分
位
… 计数
单位
… 万
千
百
十
一(个)
十分之一
百分之一
千分之一
万分
之一
… 5、小数的读法:先读整数部分(按照原来的读法),再读小数点,再读小数部分。读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。
6、小数的写法:先写整数部分(按照原来的写法),再写小数点,再小数部分:写小数部分,小数部分要依次写出每个数字,而且有几个0就写几个0。
7、小数的性质:小数的末尾添上“0”或者去掉“0”,小数的大小不变。
8、小数的大小比较:(1) 先比较整数部分;(2)如果整数部分相同,就比较十分位;(3)十分位相同,就比较百分位;(4)以此类推,直到比较出大小。
9、小数点的移动 小数点向右移:
移动一位,小数就扩大到原数的10倍; 移动两位,小数就扩大到原数的100倍; 移动三位,小数就扩大到原数的10 00倍;
移动四位,小数就扩大到原数的10000倍;…… 小数点向左移:
移动一位,小数就缩小10倍,即小数就缩小到原数的101
;
移动两位,小数就缩小100倍,即小数就缩小到原数的1001
;
移动三位,小数就缩小1000倍,即小数就缩小到原数的1000
1
;
移动四位,小数就缩小10000倍,即小数就缩小到原数的10000
1
;……
10、生活中常用的单位:
质量: 1吨=1000千克; 1千克=1000克
长度: 1千米=1000米 1分米=10厘米 1厘米=10毫米 1分米=100毫米 1米=10分米=100厘米=1000毫米 面积: 1平方米= 100平方分米 1平方分米=100平方厘米 1平方千米=100公顷 1公顷=10000平方米 人民币: 1元=10角 1角=10分 1元=100分 11、小数的近似数(用“四舍五入”的方法):
(1)保留整数,表示精确到个位,就是要把小数部分省略,要看十分位,如果十分位的数字大于或等于5则向前一位进一。如果小于五则舍。
(2)保留一位小数,表示精确到十分位,就要把第一位小数以后的部分全部省略, 这时要看小数的第二位,如果第二位的数字比5小则全部舍。反之,要向前一位进一。
(3)保留两位小数,表示精确到百分位,就要把第二位小数以后的部分全部省略,这时要看小数的第三位,如果第三位的数字比5小则全部舍。反之,要向前一位进一。
(4)为了读写的方便,常常把不是整万或整亿的数改写成用“万”或“亿”作单位的数。改写成“万”作单位的数就是小数点向左移4位,即在万位的右边点上小数点,在数的后面加上“万”字。改写成“亿”作单位的数就是小数点往左移8位即在亿位的右边点上小数点,在数的后面加上“亿”字。然后再根据小数的性质把小数末尾的零去掉即可。
知识点七
小数的加法和减法(第1条背诵)
1、小数的加、减法要注意:小数点要对齐也就是把数位对齐,得数的末尾有0,一般要把0去掉。
2、整数的运算定律(以及简便的方法)在小数运算中同样适用。
知识点八
统计图(背诵)
1、 条形统计图优点:直观地反映数量的多少。
2、 折线统计图优点:既可以反映数量的多少,又能反映数量的增减变化。 3、 折线统计图中,变化趋势指:上升或者下降。 知识点九
数学广角(默写)
(一)植树问题:
1、 两端要栽:间隔数=总长÷间距; 总长=间距×间隔数; 棵数=间隔数+1; 间隔数=棵数-1
2、 两端不栽:间隔数=总长÷间距; 总长=间距×间隔数; 棵数=间隔数-1; 间隔数=棵数+1
(二)锯木问题: 段数=次数+1; 次数=段数-1 总时间=每次时间×次数
(三)方阵问题: 最外层的数目是:边长×4—4或者是(边长-1)×4 整个方阵的总数目是:边长×边长
(四)封闭的图形(例如围成一个圆形、椭圆形): 总长÷间距=间隔数;棵数=间隔数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不要找什么资料啊,小学生多多动脑筋的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询