等腰直角三角形的高如何计算
在知道腰长的情况下。底边向下就是1.414乘以腰长,腰向下,那么高直接等于腰长。
等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等 直角边夹一直角锐角45°,斜边上中线角平分线垂线 三线合一,等腰直角三角形斜边上的高为外接圆的半径R,那么设内切圆的半径r为1,则外接圆的半径R就为√2+1,所以r:R=1:(√2+1)。
扩展资料:
等腰直角三角形是特殊的等腰三角形,它的特点是:
(1)两底角等于45°。
(2)两腰相等。
等腰直角三角形是特殊的等腰三角形(有一个角是直角),也是特殊的直角三角形(两条直角边等),因此等腰直角三角形具有等腰三角形和直角三角形的所有性质(如三线合一、勾股定理、直角三角形斜边中线定理等)。
当然,等腰直角三角形同样具有一般三角形的性质,如正弦定理、余弦定理、角平分线定理、中线定理等。等腰直角三角形三边比例为 。
等腰三角形的高=二分之根号二乘以腰长
扩展资料:
等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等 直角边夹一直角锐角45°,斜边上中线角平分线垂线 三线合一,等腰直角三角形斜边上的高为外接圆的半径R,那么设内切圆的半径r为1,则外接圆的半径R就为√2+1,所以r:R=1:(√2+1)。
等腰直角三角形是特殊的等腰三角形,它的特点是:
(1)两底角等于45°。
(2)两腰相等。
判定
根据定义,有一个角是直角的等腰三角形,或两条边相等的直角三角形是等腰直角三角形。
证明: 勾股定理的逆定理可知该三角形是直角三角形,并且有两条边相等,满足等腰直角三角形的定义。
3.底角为45°的等腰三角形是等腰直角三角形。
证明:用三角形内角和定理求出角度分别为45°、45°、90°,满足等腰直角三角形的定义。
高等于腰长的(根号2)/2,等于底长的1/2。
等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等 直角边夹一直角锐角45°,斜边上中线角平分线垂线 三线合一,等腰直角三角形斜边上的高为外接圆的半径R,那么设内切圆的半径r为1,则外接圆的半径R就为√2+1,所以r:R=1:(√2+1)。
扩展资料:
等腰直角三角形是特殊的等腰三角形,它的特点是:
(1)两底角等于45°。
(2)两腰相等。
等腰直角三角形是特殊的等腰三角形(有一个角是直角),也是特殊的直角三角形(两条直角边等),因此等腰直角三角形具有等腰三角形和直角三角形的所有性质(如三线合一、勾股定理、直角三角形斜边中线定理等)。
当然,等腰直角三角形同样具有一般三角形的性质,如正弦定理、余弦定理、角平分线定理、中线定理等。等腰直角三角形三边比例为。
参考资料:等腰直角三角形-百度百科
2016-12-27 · 知道合伙人教育行家
另一条高是直角顶点到斜边的垂线段,长度是斜边的一半,是两条直角边的√2/2倍。