1个回答
推荐于2016-01-18 · 知道合伙人教育行家
关注
展开全部
f(x) = √3/2 cosx + 1/2 sinx + 1
= 1/2 sinx + √3/2 cosx + 1
= sinxcosπ/3+cosxsinπ/3 + 1
= sin(x+π/3) +1
-1≤sin(x+π/3) ≤1
0≤sin(x+π/3)+1 ≤2
值域【0,2】
x+π/3∈(2kπ-π/2,2kπ+π/2)时单调增,此时x∈(2kπ-5π/6,2kπ+π/6)
即单调增区间(2kπ-5π/6,2kπ+π/6),其中k∈Z
= 1/2 sinx + √3/2 cosx + 1
= sinxcosπ/3+cosxsinπ/3 + 1
= sin(x+π/3) +1
-1≤sin(x+π/3) ≤1
0≤sin(x+π/3)+1 ≤2
值域【0,2】
x+π/3∈(2kπ-π/2,2kπ+π/2)时单调增,此时x∈(2kπ-5π/6,2kπ+π/6)
即单调增区间(2kπ-5π/6,2kπ+π/6),其中k∈Z
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询