已知△ABC三内角满足cos(A+B)cos(A-B)=1-5sin^C,求证:a^+b^=5c^
已知△ABC三内角满足cos(A+B)cos(A-B)=1-5sin^C,求证:a^+b^=5c^.^表示平方...
已知△ABC三内角满足cos(A+B)cos(A-B)=1-5sin^C,求证:a^+b^=5c^.
^表示平方 展开
^表示平方 展开
1个回答
2014-07-29
展开全部
证明:已知cos(A+B)cos(A-B)=1-5sin2C,那么:
(1/2)*[cos(2A)+cos(2B)]=1-5sin2C
(1/2)*(1-2sin2A+1-2sin2B)=1-5sin2C
1-sin2A-sin2B=1-5sin2C
即sin2A+sin2B=5sin2C
由正弦定理有:a/sinA=b/sinB=c/sinC,
则证得:a2+b2=5c2
(1/2)*[cos(2A)+cos(2B)]=1-5sin2C
(1/2)*(1-2sin2A+1-2sin2B)=1-5sin2C
1-sin2A-sin2B=1-5sin2C
即sin2A+sin2B=5sin2C
由正弦定理有:a/sinA=b/sinB=c/sinC,
则证得:a2+b2=5c2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询